
SEPTEMBER 1981

i l lKiO
VOLUME TWO NO. 4$2.50

MDBS Part 2-QRS

Assembly Language Interface to PL/l-80

Terminal Talk

Bringing Up UCSD Pascal Version 1.5 or 2.0 From Scratch

8080 Programming Tutorial
Introduction and Terminology
Part 1

Calling SORT As A Subroutine From MBASIC SORT

Volume II No.4 September
Managing Editor: Jane V. Mellin
Production Assistant: K. Gartner
Administrative Assistant: Susan M. Sawyer

CONTENTS PAGE

Opinion Editorial Comments 2
The Pipeline 3
Cartoon 8
A Reader's Comment 23
Reply 23

Features Bringing Up UCSD Pascal Version 1.5 or 2.0 From Scratch
by Kelly Smith 5

MDBS Part 2-QRS
by Harris Landgarten 9

Terminal Talk
by Steve Patchen 15

Calling SORT As A Subroutine from MBASIC SORT
8080 Programming Tutorial

18

Introduction and Terminology-Part 1
by Ward Christensen

Assembly Language Interface to PL/I-80
24

by Michael J. Karas 27

Product Status A Note on XASM-51 7
New Versions 32
New Products 34
Bugs 35
Available Memory Requirements 38
Operating Systems 38
Hard Disk Modules 38
Version List 39

Miscellaneous Hear Ye! Hear Ye! 4
Change of Address 8
OOPS! 14
Coming Soon. . . 14
Attention Dealers! 14
Don't Forget 18
Tips and Techniques 31
A Software Trick 36

Copyright© 1981 Lifelines Publishing Corporation. No portion of this publication may be reproduced without the written permission of the publisher.
Lifelines,Volume II, Number 4. Published monthly. The single copy price is $2.50 domestically, including the U.S., Canada, and Mexico. The single issue price for copies sent
to all other countries is $3.60. A one year's (12 issues) subscription is priced at $18.00, when destined for the U.S., Canada, or Mexico, $40.00 when destined for any other
country. All checks should be made payable to Lifelines Publishing Corporation, Foreign checks must be sent in U.S. dollars, drawn on a U.S. bank; checks, money orders,
VISA, and MasterCard are acceptable. All orders must be prepaid. Lifelines is published by Lifelines Publishing Corporation, 1651 Third Avenue, New York, N.Y. 10028; tele-
phone: 212-722-1700. Please send all correspondence to the Publisher at the above address. Postmaster send change of address to the above address. Application to mail at
second class postage pending at New York, N.Y.

CB-80 is a trademark of Compiler Systems.
SUPER SORT and WordStar are trademarks of of MicroPro International Corporation.
MDBS is a trademark of Micro Data Base Systems.
The CP/M ® Users Group is not affiliated with Digital Research, Inc.
CP/M, MAC, PL/I-80 are registered trademarks of Digital Research, Inc.
COBOL-80, MACRO-80, MBASIC, BASIC-80, FORTRAN-80 are trademarks of Microsoft.
Z80 is a trademark of Zilog Corporation.
Program names and computer names are generally trademarks or service marks of the author or manufacturing company.

Editorial CommentsllHIIIIIIIIIIIIIIJIHIIIIIIIIIIIIIIIIIIIIIPIIIIIirillllllllllll
I'm sure that many of you have
noticed the vast amount of inconsis-
tency in the quality of software
documentation among various au-
thors. While much of the sub-stan-
dard material can be attributed to a
rushed job by someone happy to
have finally gotten the "last" bug,
the larger problem may lie with a
firmly established historical prece-
dent which no longer applies.

Until five or six years ago, the
scenario looked something like this:
giant computer companies raced to
build bigger and better machines for
a customer base which felt lucky to
obtain a machine in a matter of
years. Software was of no concern to
hardware manufacturers, since
those lucky enough to have purch-
ased one of their computers could
easily have any necessary software
generated by the in-house program-
ming staff. The documentation sup-
plied by the hardware maker was
probably written by the engineering
staff, and was clearly targeted at the
highly trained experts employed by
the company purchasing the
machine. The application develop-
ment tools, such as compilers and
assemblers, were accompanied by
reference manuals. The purpose of
the reference manual was to clearly
and tersely set forth the syntax of the
language, making the assumption
that those reading had extensive
prior knowledge of the concepts in-
volved, a valid assumption since
anyone using a mainframe surely
had access to some sort of training.
Applications were either generated
in-house to suit the needs of the
user, or contracted for, from outside
consultants. Either way, the
documentation was only good
enough to serve as a memory re-
fresher to users who had the pro-
gram authors available for extensive
training and questioning.

Unfortunately, some of these con-
ventions have carried over into the
microcomputer world of today. The
scenario, however, has changed
substantially. The would-be prog-
rammer in many cases has no formal
training in the theories of computer
languages, and the application user,
while no less intelligent than his cor-
porate counterpart, has no in-house

in an illustrative manner, while the
experienced user can refer to the in-
dexed reference section for technical
information.

Ultimately, it is probable that the
most successful computer programs
will attribute their widespread usage
as much to outstanding documenta-
tion as to utility.

It seems that a strong new com-
petitor is about to enter the battle for
the affections of programmers. CB-
80 was formally announced at a re-
cent seminar given by Gordon
Eubanks of Compiler Systems. Bill
Burton was present at the seminar
and informed me of the highlights.
CB-80 is a three pass BASIC compiler
which generates true native 8080
code, via the traditional REL file
root. The language itself is a super-
set of Compiler System's popular
CBASIC.. Among the additions to
the language are: Nested IF THEN
ELSE; Error Trapping; an INKEY
function; Alpha-numeric Labels
Lock and Unlock with MP/M2; and
the ability to change individual bytes
with a record. The authors claim that
significant optimization will result in
programs which are more compact
and faster than either BASCOM or
PL/I-80. Tentative release date is
September 1st. No firm price has
been announced. The library distri-
bution license (necessary for selling
compiled programs) calls for a
$2000.00 per year payment which
covers all code generated by a given
compiler. Considering that Micro-
soft now has BRUN and Compiler
Systems is licensing libraries to au-
thors, the coming months should
prove interesting. The possibilities
seem endless. See you next month.

expert to question. Therefore, it is
necessary for documentation to
meet new standards based upon a
realistic assumption of prior knowl-
edge. This need is especially trans-
parent when applied to program-
ming language manuals. Almost
without exception, the old rule of
the reference manual still domi-
nates; undoubtably because com-
piler writers were indoctrinated to
assume prior knowledge of the lan-
guage. At the very least, all prog-
ramming language documentation
should include a list of tutorial books
for both the novice and intermediate
programmer. Caveat Emptor should
certainly be the byword of the novice
compiler buyer. If the product does
not explicitly mention instructional
material, it can be safely assumed
that none is included in the purchase
price. Wisdom would dictate that
one wishing to learn to program in a
new language should investigate
locally available university courses.
If you have used a programming lan-
guage book which you found par-
ticularly helpful, please send me the
name of the book along with the
name of the language it explains (be
specific in naming the language).
Lifelines will try to compile a list of
suggested reading for compiler
users.

Documentation accompanying ap-
plication software is generally better
in terms of invalid assumptions. An
application programmer, in many
instances, will assume prior know-
ledge by the user of the topics the
program deals with. While in some
cases this is unavoidable, these as-
sumptions should be held to a mini-
mum. As many consultants will tes-
tify, small business bookkeepers are
often-times uneducated in truly
proper accounting procedures.
Tutorial sections in accounting pack-
age manuals are therefore never out
of place. When application
documentation does fail, it is usually
because of poor organization. You
can't figure out what to do first, or
no set procedure for repetitive oper-
ations is set forth clearly. The best
manuals I've seen usually separate
their tutorial function from their re-
ference function. In this way, the
new user can be "led down the path"

Harris Landgarten

2

IlllllllllllllllllllllllllllllllllllliThe Pipeline
Take a look at graphics
Software and hardware designers
are finding that there is more to the
system world than alphanumeric
displays and hardcopy output. At
least one would gather so from visi-
ting the Siggraph exposition held in
Dallas, Texas this past August.

You could find on display every-
thing from an Apple computer per-
forming detailed trend analysis in a
variety of colors to megabuck sys-
tems such as Genisco's Spacegraph
doing simulated 3D displays.

What was significant though, was
that the preponderance of equip-
ment shown was for the business
world. According to Ken Anderson,
publisher of the Anderson newslet-
tert—a newsletter to the graphics
world, the need for graphics, specif-
ically color graphics, has grown at a
pace far faster than anyone really ex-
pected. Moreover, Anderson con-
tends that much of its growth has
been the result of end users realizing
that computers, especially micro-
computers, could greatly enhance
their personal productivity. There-
fore, as a consequence, they have
demanded more from the micros
and have pushed the industry for
enhancements.

Another point that Anderson makes
is that computer manufacturers such
as Apple and Radio Shack, working
in tandem with software developers
like Personal Software, have shown
that large amounts of data, that
heretofore was presented as reams
of printouts, could be reduced easily
to a single display that conveyed
easily understood information.

Others agree with Anderson. David
Deans, V.P. of Marketing at Intelli-
gent System Corp.(ISC), points out
that for his line of color computers,
ISC has developed a full line of CP/M
compatible color graphics software.
Furthermore, ISC is developing in-
terfaces to interact with large main-
frame graphics ware, and to support
a variety of graphics hardware such
as Houston Instrument's line of
desktop plotters.

Not all graphics are relegated to
specialized systems however. Virtu-

by Carl Warren
of data generated in SuperCalc.
Following the same trend is Ashton-
Tate with dBase II. They expect
sometime in the next ten to twelve
months to offer an option that will
let users create business type
graphics from dBase II database
items.

With the strong trend toward
graphics, specifically business
graphics, it appears that end-users
will want more application-ware,
but without a lot of work. Therefore,
software designers now have the
task of not only developing pack-
ages that perform a multiplicity of
tasks, but are what is universally
termed: user-friendly.

This function of being user-friendly
implies that the user is extremely un-
sophisticated as far as computers go.
This means that packages must
come ready to run, or can be easily
installed by employing such tech-
niques as menu selection.
Moreover, it may be more palatable
to a user to select a single vendor and
rely on them to provide all the soft-
ware. This latter consideration may
be the key to why Xerox, Hewlett
Packard, and others may enjoy im-
mediate and long lived success with
their small desktop units.

Already Apple, Radio Shack, Vector
Graphics, ISC, to name a few, are
enjoying success by providing soft-
ware that requires little or no so-
called computer literacy on the part
of the user. This, coupled with a
wide ranging support base, has
made the systems offered by these
companies very acceptable to the
business user.

Although graphics is important,
you might still be in the mode where
you are anxious to add more storage
to your system. And if your system
happens to be a Heath/Zenith Z-89,
you might want to consider looking
at Magnolia Microsystems' double
density disk controller. This board
gives you the ability to double the
density on your 5.25 inch single
sided floppies (the 90K units are
boosted to 161K), and support 8-in.
drives at the same time.

(continued next page)

ally every manufacturer of printers
is offering some kind of graphics
capability. Epson, for example, is of-
fering a ROM add-on for the popular
MX-80 desktop printer. This ROM
set gives you the capability of doing
bit graphic hardcopy output from
any system you can interface the
unit to. In daisy wheel printers, Di-
ablo offers an option board for the
Model 630 that lets you easily slip in
and out of a graphics mode for creat-
ing meaningful business graphics.
But be aware, the Diablo printer can
perform this function without the
additional board, with the aid of
user written software.

Not so surprising is that Diablo and
Epson aren't the only printer man-
ufacturers offering graphics capabil-
ity. You might want to consider
looking at Integral Data's Paper
Tiger printers for bit graphics, or Oki
Data. The latter has been working in
tandem with Agent Computer Ser-
vices to provide a wide range of
graphics software for both the Apple
and TRS-80 microcomputers.

Should graphics be your thing, you
might want to explore the pos-
sibilities even further by adding a di-
gitizing pad, available from a variety
of manufacturers. The most popular
is the Bit-Pad from Summagraphics.

By employing a digitizing pad, you
can quickly develop working draw-
ings that depict everything from the
Mona Lisa to what a machinist might
use.

As exciting as all these hardware
items are, the real key boils down to
software. Currently, very few soft-
ware houses have developed useful
packages that maximize the power
available, thus opening the door to
interesting and lucrative software
designs.

Not to be left out of the rising need
for high capability, graphics
oriented software is Sorcim, the
makers of SuperCalc. According to
Richard Frank, the company's foun-
der, Sorcim is already adding extras
to the recently released electronic
spread sheet. These extras permit
the creation of graphics on a Hous-
ton instrument plotter from the base

3

The board comes with everything
needed to quickly install it in the Z-
89, (typically 45-min), is CP/M com-
patible, and permits the use of the
Heath/Zenith controller in the sys-
tem. For example, you can have the
Heath board drive one or more
drives and the Magnolia board han-
dle the others. Magnolia permits
communication with the Heath
board, thus permitting you to up-
grade your software library to the
higher density.

Unlike the Heath board that requires
the use of hard-sectored diskettes,
the Magnolia controller is designed
to support soft-sectoring.

Software installation is eased by the
use of menus in a file called
DDSETUP that guide you through
all the necessary configurations. Be
aware however, that Heath and
Magnolia differ in device designa-
tions. Heath opted for their own
method of defining disk drives, and
printer drivers. Magnolia took a
more standard approach; which by
being standard may cause some con-
fusion for Heath users.

An example of this confusion is the
installation of WordStar 3.0. Most
Heath users tend to request the
TTY:driver on INSTALL. This won't
work with the Magnolia version of
CP/M without some redefining of
the ports in the driver routines
which Magnolia provides. A quick
way around this is to choose the di-
rect port driver option in INSTALL.
When invoked WordStar will quicky
configure itself to the desired port
and provide the required hand-
shaking to establish communica-
tion. When you choose this option,
though, it dedicates the software to a
specific system configuration, which
in most cases is permissible, if not
desirable.

Should you decide that you want to
add the Magnolia board to your sys-
tem, you might do well to buy your
drives from them also. Magnolia
suggests Qume Data Trak 8 drives
and unfortunately only references
those drives in the installation pro-
cedure, which can cause a problem.
Even though other drives offer a
compatible interface, the layout and
option designations are most likely
different, thus precluding ease in
bringing the drive up.

If you're thinking about bringing up
your own computerized bulletin
board (CBBS), and aren't sure of the
best way to go, you might want to
contact Ward Christensen about his
CBBS package. According to Ward,
who can be reached via Lifelines, he
is in the process of updating his
CBBS package. The goal? To make it
more user friendly, of course. Ward
says that the more people use it the
more they want. Furthermore, Ward
says that users have been very vocal
regarding what they liked and dis-
liked about his system and as a result
many improvements have been
made.

Currently, there are various
methods of putting a system on-line,
but the most popular appears to use
CP/M and possibly Ward's package.
One approach that is coming into
vogue, and touted by Micro-
peripheral's president Mike Dar-
land, is to tie hundreds of micros to-
gether nationwide and create a
micro electronic switching system.
Darland is still in the process of de-
veloping this idea, and promises to
be offering some unique oppor-
tunities for micro owners, plus some
exciting deals on his modem.

Databases are important for a
number of reasons, but if you're in
an information intensive business,
like a writer is, you currently have a
number of choices of software from
which to choose to use on your dedi-
cated system.

However, you might want to extend
your capabilities and share your
knowledge with others by employ-
ing the facilities of one of the
timesharing systems such as Micro-
Net. By employing the services of
such a system, you can extend your
storage space, have interactive
dialogue with other users, and pro-
vide a unique service to other micro
owners. CompuServe's John Meier
envisions users making MicroNet
and other similar services an adjunct
to their smaller systems.

Supporting this effort, CompuServe
has already set up dedicated proces-
sors to improve system throughput,
and is developing software. This lat-
ter offering will make it possible for
you to enter totally unrelated infor-
mation into a database and retrieve it
in a manner suitable to you.

Once implemented, data stored on
MicroNet can then be downloaded
to your local system and be mas-
saged by a data handler like dBase II
for example. Currently, a system
similar to this is being employed by
one California businessman to han-
dle large parts inventories he's re-
sponsible for. The software he uses
consists of a datahandling system
written in FORTRAN on MicroNet
with a data structure interface to
dBase II on his end. His purpose is
two-fold: take advantage of extra
storage possible on MicroNet, and to
make available his inventory status
and needs to his other office in
Denver. Interestingly, his needs
have already grown, and he is look-
ing for ways of using the data to
develop management reports and
maybe a way of having graphics rep-
resentation of the data.

A late news flash—
The IBM Personal Computer is here!
And it is called the IBM Personal
Computer. Based on the 8088, it is
priced from $1565 to $6300. The basic
configuration comes with a
keyboard module, uses an audio
tape cassette and plugs into a TV.
Color graphics and BASIC are op-
tional. An expanded system with
color graphics, two 5 1/4" floppy
drives of 160K each, an 80-CPS dot
matrix printer, and 64K of memory is
priced at $4500. It uses the Ad-
vanced Disk Operating System de-
veloped by IBM and Microsoft. IBM
is currently working with Digital Re-
search and SofTech for CP/M 86 and
UCSD Pascal.

Hear Ye!
Hear Ye!

A late news bulletin has just come in:
Pascal MT -I- and the Microsoft Com-
pilers are now up and running on
the Apple. (The CP/M may need to
be updated or patched—if your
CP/M signs on as version 2.20B, it
has the required fixes.)

4

Bringing-up UCSD Pascal Version 1.5 or
2.0 From Scratch IlillllllllllUI'llllllllllllllllllllllillJIIIIIIIIIIUII

by Kelly Smith
B(lah, B(lah, B(lah, . . . ". Each of
these describes what happens when
you type one character, either an "E"
or an "R" or an "F", etc. . . . DON'T
TYPE ANYTHING YET!!!

"E" calls the system screen editor,
"R" runs a particular compiled pro-
gram, etc. . . . The letter we want is
"F". It calls a program called FILER,
which is for copying, deleting, and
generally "messing around" with
files. It has the particular property
that when you type "F", it reads in
the FILER, then comes up with a
whole new prompt line. In effect,
this is a system with two levels, and
with each command being just one
character. "F" is the command that
"pops" you from the outer com-
mand level «"Command:"» into the
inner level «"Filer:"». You "pop"
back out by typing "Q" (for QUIT)
while in the FILER level.

kettes . . . One of them is called "CP/
M". It is a diskette readable by your
system, and on it is a file called PAS-
CAL. COM. You put this diskette in
the "B" drive, and PIP it to your "A"
drive that has your CP/M on it. Note
that although the diskette from
UCSD is called "CP/M", it does not
have the whole CP/M system on it,
just a few UCSD utilities, but it is in
CP/M diskette format. At this stage
you should ignore all the stuff about
creating a "bootstrap" on pages 274-
275 (vi-vii); that can come later.

Now you are ready to get started.
There should be a diskette among
the UCSD diskettes called PAS-
CALS: (2.0 Volume U001A. B:). This
is the MAIN system diskette. Locate
it, and get a "scratch" (formatted
and empty) diskette. Start "booting"
by executing the file PASCAL. COM
on your CP/M system diskette in
drive "A" (just type PASCAL fol-
lowed by carriage return). It will
prompt (misspelled) by asking you
to insert your "PASAL" diskette in
drive "A". Remove your CP/M sys-
tem diskette, and put in the PAS-
CALS: diskette as well as the
"scratch" diskette in drive "B". Now
hit carriage return, and after a few
seconds, your console should dis-
play "Loading . . .", and after 10 to
20 seconds a message will appear
"Welcoming" your diskette (not
you) to the system. It will also tell
you that today's date is sometime in
1978 (1979), but don't worry, we'll be
fixing that soon.

Using the UCSD Pascal System

So now UCSD Pascal has signed-on
. . . what do we do now ?!? Let's fix
that date too today! This isn't just for
appearance: every time the system
creates a file on a diskette it puts on
the date of its creation, and that
helps you keep track of when you
made that file. First I will give a sum-
mary of how you type system com-
mands . . . you will notice your cur-
sor sitting at the end of a long
prompt line, which tells you "Com-
mand: E(dit, R(un, F(ile, C(omp,

My major project recently has been
getting UCSD Pascal up and run-
ning on my 8080 system (an IMSAl
with iCOM floppies and 56 kilo-
bytes of memory). This has involved
a certain amount of agony and frust-
ration, most of which could have
been avoided. If you are one of the
lucky ones that managed to get
copies of UCSD Pascal prior to the
revoking of all license agreements
that had been placed with UCSD (if
you got all 14 diskettes, you have the
source code!), and you never got it
running . . . this is for you! Note: Of
course you could always buy it from
SofTech . . . they would be more
than happy to sell you software .

There are a reasonable number of
people out there going through the
same process, and I thought that
since I have (inadvertently) become
an expert on all of the mistakes one
can make bringing up UCSD Pascal,
it might be helpful if I described the
process, and perhaps save you some
of the agony.

NOTE: This article applies to either
version 1.5 or 2.0 (where references
to 2.0 will be closed in "()"). The
general assumption is, that you have
an 8080 or Z80 system which has two
floppies, at least 48 kilo-bytes of
memory, and the Digital Research
CP/M operating system, as well as
the UCSD Pascal diskettes and the
manual.

Messing Around with Files

Alright, let's type "F". With luck, the
FILER prompt will come-up shortly,
offering you a new range of
"goodies". They include:

V Lists names of your disks
which are available.

Z Zeros out the directory of a
diskette.

B Scans a diskette for "bad
blocks".

L Does directory listings so you
can see what files are on a
diskette.

D Changes the date.

T Copies (Transfers) files.

C Changes the name of a file.

R Removes (deletes) a file.

Now we are ready to change the date
. . . we start by typing "D", and the
program should display the "old"
date and ask you for a "new" one.

(continued next page)

Getting Off the Ground

It's actually fairly easy to get UCSD
Pascal up and running, but a lot har-
der to read enough of the manual to
figure out how to do it. One secret is
that the manual is best read from
back to front! I will give page refer-
ences to the manual as I go along,
since it's index is nearly useless. On
pages 273-275 (v-vii) you will find a
reasonably concise description of
how to get things off the ground. Let
me paraphrase it: You start by get-
ting CP/M up and running with
existing CP/M disks, and then look
among the various UCSD Pascal dis-

Choose one which is short (eight
characters) enough to be easily
typed, memorable, but not so short
that you are likely to type it by mis-
take. Let's say that it is SYSTEM:
(volume names are always followed
by colons, otherwise the system
thinks they are file names). When
you have finished doing the "Z"
command and are back to the FILER
level, do a "V" command again to
see if the system now knows that
SYSTEM: is there.

At this stage you may want to give
an "L" command at the FILER
LEVEL. This LISTS the names of all
files on a given volume. You have to
tell it the volume name, which will
be either PASCALS: (V001A. B) or
SYSTEM: . You can look at the list of
names of files on PASCALS: to
familiarize yourself, and on SYS-
TEM: to make sure there aren't any
(still an "empty diskette").

Now type "B" to do a B(ad blocks
scan of SYSTEM: to make sure that
there are no bad blocks there (Refer-
ence page 26 (25) of the manual).
Now we are ready to copy all of the
stuff on PASCALS: to "scratch" dis-
kette SYSTEM: . This is done by typ-
ing "T" while in the FILER. It will ask
for the name of the file you want to
copy (Transfer). Now you may enter
all of the files on your system dis-
kette, one by one, but that would be
tedious (also you don't know them
yet).

What you can use instead is the
"wild-card" character, which is an
equal sign (" = "). If you ask it to
Transfer the "file" named "*: = " to
SYSTEM: = (i.e. *: = ,SYS-
TEM: = «cr») it will copy EVERY file
from your default volume (#4,
named PASCALS: or you will see the
name of each file appear on your
console as they are copied from one
volume to the other. When the sys-
tem returns to the FILER level, you
should try an "L" command to check
that SYSTEM: (or equivalently, #5:)
has all the files that were on PAS-
CALS: (orUOOlA: .B).

Two Name Changes Required

You are now almost ready to start
writing programs, but first set PAS-
CALS: aside (our "backup" diskette)
and go through the "booting" pro-
cess again (again, a "scratch" dis-

Just type it in the same format as the
one it typed out, and then hit car-
riage return. You should get a re-
sponse telling you that the date has
been changed, and "what to", and
then you will find yourself back at the
FILER prompt line again. (Note that
the one line FILER menu is too short
to list all the FILER commands avail-
able to you. If you wish to see what
additional commands exist and
what they are, type in a "?"; an "in
depth" discussion of the FILER com-
mands are listed in pages 7-30 [7-30]
of the USCD manual.)

So now you have successfully execu-
ted a FILER command. Now the next
thing you want to do is make a back-
up copy of your main system dis-
kette! (I can't stress this enough, if
you are a "newcomer" to UCSD Pas-
cal). If we are going to copy a whole
diskette, we need to get the system
to recognize that your "scratch" dis-
kette is really installed in your sys-
tem. Start by typing "V". This is the
FILER command that lists the "vol-
umes" (disks and other devices)
which are "on-line". The list that
should appear on your console will
show a series of numbered devices.
CONSOLE and SYSTERM are your
screen and keyboard. PASCALS:
(U001A.B) is your main system disk,
and PRINTER is a listing device. But
notice that it doesn't list anything
corresponding to your other
("scratch") diskette . . . that's be-
cause it doesn't know it exists yet.

ette in drive "B") with our new SYS-
TEM: diskette in drive "A" as the
main system diskette. Note also,
that you may want to do FILER com-
mands "Z" and "B" on the "scratch"
diskette, so as to make it available as
a place to T(ransfer) files too . . .
Now we have our "backup" PAS-
CALS: out of harm's way and are
using the copy SYSTEM:.

At this point the temptation to type
"E" is getting strong. Surely we
want to get started typing in a pro-
gram! Don't yet!!! The problem is
that when you are at the COM-
MAND level and type "E", the sys-
tem goes out to your diskette and
looks for a file called SYS-
TEM. EDITOR, and starts running
the code in that file . . . the catch
here, is that that's the Screen-
Oriented Editor, and (no doubt)
does not know how your console
random cursor addressing works!
It's a nifty editor, but you can't run it
until you go through a (rather elabo-
rate) process of writing a Pascal
routine called GOTOXY and run-
ning two programs called BINDER
and SETUP. This is not only tricky,
but is very system dependent, so we
will leave it aside. Right now, if you
type "E" at the COMMAND level,
all that happens is that you "crash"
the system!

There is another editor on your disk
however, called YALOE (Yet
Another Line Oriented Editor
[should have been called "Son-of-
TECO"]), and we will use that. You
can run it by typing in "X" (for exec-
ute) at the COMMAND level, and
then YALOE«cr». Now, using the
"C" command (at the FILER level),
CHANGE the file name SYSTEM.
EDITOR to SCREEN. EDITOR
(pages 18-19 in the 1.5 and 2.0 manu-
als). Then change YALOE. CODE to
SYSTEM. EDITOR. You might at
this point want to R(emove (pages
20-21 in 1.5 and 2.0 manual) the extra
copy YALOE. CODE (NOTE . . .
this is the command that erase files,
and should be used with great care!).
Now you can edit using YALOE by
getting to the COMMAND level and
typing "E". There is also one other
change that you should consider.
On the system disk is a file named
SYSTEM. MICRO, the main system
interpreter, which runs ALL code.
But there is also a file called
8080T. CODE, which is another
copy of the interpreter (a longer

Introducing Your Diskette
to UCSD Pascal

To inform UCSD Pascal of the exis-
tence of your "scratch" diskette,
type "Z". This "zeros out" the direc-
tory of a diskette. Of course, it now
asks you WHICH disk. It may strike
you as absurd that you are to tell it
which diskette when it doesn't
know the name of the new diskette,
but you aren't going to tell it a name
. . . you will not type the name of the
diskette, but its device number. Re-
call that your main system PAS-
CALS: (U001A.B) diskette was de-
vice number 4, the other is always
number 5. From "Z" there follows a
series of prompts asking for various
things. Refer to the Z(ero writeup on
pages 28-29 (29-30). I always say my
disks have 494 sectors, and it seems
to be happy with that. You will have
to give the new volume a name.

6

B Go back to the Beginning of
the file.

nA Advance "n" number of lines.

nL List "n" number of lines (but
don't move the pointer!)

nF Find the n-th occurrence of a
string.

nD Delete the next "n" number of
characters.

Here we Go!

To compile the Pascal statements
you have typed in "P-Code"
(pseudo machine code), make sure
you are back at the COMMAND
level, then type "C". You will get
compiler messages, and it will link
(if necessary), and return to the
COMMAND level. Now type "R" to
run the compiled code, and you will
get "Winsor Brown is a Pascal
Phreaque" displayed on your con-
sole . . .You have done it!

You may have noticed the mysteri-
ous comment line "(*$S + *)" at the
beginning of the sample program. It
tells the compiler that you don't
have enough memory to do every-
thing in memory, so it should write
out stuff to disk. It isn't necessary (or
so I am told) if you have 56 kilo-bytes
of memory, but it sure is if you only
have 48 kilo-bytes (without it, you
get stack overflow and crash the sys-
tem). Compiler directives look like
this:

(*$S + ,G + *)

. . . and are the first line in the pro-
gram, as you need them. They are
fully described on pages 81-87 (77-
83) of the UCSD Pascal manual. You
will also want to read about "Differ-
ences Between UCSD PASCAL and
Standard PASCAL" on pages 135-
158 (133-158). You will rapidly run
out of space on your main system
diskette, and may have to make a
copy, leaving out some of the non-
essential stuff like the Calculator and
the BASIC compiler. In addition,
you will also need to learn to use
"B(ad" and "K(runch" on pages 26-
27 (25-27) in the manual.

one). The difference is that it has the
capability of computing the trans-
cendental functions (like LOG, SIN,
etc.) while this is left out of the SYS-
TEM. MICRO file. If you are going
to be using these scientific functions,
you must C(hange SYSTEM.MICRO
to (say something like) 8080U.MI-
CRO, and then 8080T.MICRO to
SYSTEM.MICRO. Then it would be
wise to "re-boot" from CP/M to
make sure that the new interpreter is
the one resident in memory.

I Insert.

QU Quit and Update SYSTEM.
WRK. TEXT

QE Quit and Exit (don't update
SYSTEM. WRK. TEXT).

V Verify (display) the current
line.

At Last!!!

Now we're finally ('bout time!)
ready to edit a program and run it.
Get to the COMMAND level (type
"Q" if in the FILER), and then type
"E". A YALOE prompt should ap-
pear, and it will tell you that you
have no workfile. The editors always
"work" from a workfile called SYS-
TEM. WRK. TEST, your workfile.
At the FILER level there are four
commands to deal with workfiles:

If a command doesn't have a value of
"n", it takes it to be one. Negative
values are allowed. Each command
is terminated by hitting the Escape
(ESC) key, which will then display a
"$" character. Also, commands can
be strung together in a line, and they
will not be executed until you type
an extra Escape("$$"). For example,
to issue a command which finds the
string "Kelly", deletes it, then in-
serts "Winsor" at that point, type
(after the "$" prompt):

FKelly$-3D$IWinsor$V$$

Alright, you are ready to edit a file.
Here's a program to type in (the "$"
really is a dollar-sign):

(*$S + *)
PROGRAM TEST;
BEGIN

WRITELN('Winsor Brown is a
Pascal Phreaque');
END.

N(ew Throws away the present
workfile so that you can
start with a "clean slate".

G(et Tells the system which file
you want to use as the
workfile, also throwing
away any pre-existing
workfile.

W(hat Asks for the name of the
workfile (although after
you edited it, appears to
forget the name, which is
not a tragedy).

S(ave Writes the workfile to a file
of your choice (file name),
destroying any old copy of
that file in the process.

You won't have to use any of these
yet (reference pages 13-15 [13-15]),
for now you might want to know
some YALOE commands so you can
type in your first program. Note:
After you get out of the editor, the
edited stuff is kept in SYSTEM.
WRK. TEXT, which means you
don't have to overwrite the original
file. YALOE is written up on pages
59-69 (63-73) of the manual. Here are
a few of the commands:

A Note On XASM-51
Use "I" to type it in (you can type in a
reasonable number of lines on one
Insert command). At the end of the
inserted Pascal statements, type Es-
cape twice, and use -10L$$ to display
what you have typed. Then use
QU$$ to write the result out to SYS-
TEM. WRK. TEXT.

Assemb l i ng the t es t f i l e
(TEST51.ASM) in Vers ion 1.07
should flag a ”B” error on Bit 8,
EQUATE. The format is i n t en -
t i ona l l y incorrect, to show the
error :

B000 BITS EQU 0F1H.0

7

Old Address:New Address:

Change of
Address

Please notify us immediately if you
move. Use the form below. In the
section marked "Old Address", affix
your Lifelines mailing label—or
write out your old address exactly as
it appears on your label. This will
help the Lifelines Circulation De-
partment to expedite your request.

NAME NAME

COMPANY COMPANY

STREET ADDRESS STREET ADDRESS

CITY STATECITY STATE

ZIP CODEZIP CODE

8

MDBS Part 2 -QRS- 1|||||||||||||||||||1lllllllllllllllllllllllllllllllllllll
The Query System/Report Writer ||

by Harris Landgarten

CUSTLIST. Conditional tests can be constructed using
all standard relations and boolean expressions allowing
maximum flexibility. More complex queries require
more complex PATH CLAUSES, which may be beyond
the non-technical user. The PATH CLAUSE specifies
the sets which must be travelled by the query system in
finding the needed information. What's more, set paths
which require the system to travel from a member to an
owner require the set name to be prefaced with a "»" to
signify an "upstream" movement. For example, to list
all the orders which contain part number Al 72 along
with the associated customer names, you would LIST
NAME, PONUM, QUANTITY FOR PARTNO =
"A172" THRU INVNTRY > PLINK >LINE>
ORDERS. Not only are such PATH CLAUSES a neces-
sity, but the order in which they are written can greatly
affect the speed with which the query is processed. In
the example above, the system would first search the
INVNTRY set until it found PARTNO = "A172". It
would then trace the back links from the PART "Al 72"
to the ultimate owners of this part, resulting in only
looking at line items which were already known to con-
tain the requested part. If the PATH CLAUSE had been
ordered differently, for example, THRU CUSTLIST
ORDERS LINE PLINK, the system would have
searched all customer orders for line items containing
"Al 72" by looking at every line item of every order se-
quentially, an obviously inferior manner of locating the
required information. It is questionable whether or not
an untrained individual would be able to format such
queries with only the aid of a database diagram as
suggested by the manual.

The WRITE command works similarly to LIST except
that all column headings are suppressed and terms are
written one per line, producing a "flat file" which can be
stored to disk for later input to other software packages.
The STATS command causes the min, max, average,
standard deviation, variance, sum, and number of ob-
servations of the numeric terms in the report to be com-
puted. (For non-numeric terms, only the number of ob-
servations is calculated.) For example, STATS TOTAL
THRU ORDERLIST will print all the mentioned statis-
tics for the total amounts of customer orders. A similar
type of statistics reporting feature can be applied at any
point in a report by inserting control breaks, using the
BY clause. To obtain a report of the cumulative quan-
tities of all parts on orders, you would type, LIST
PARTNO,QUANTITY BY PARTNO THRU INVNTRY>
PLINK, which would cause a numeric summary of
QUANTITY every time PARTNO changed.

The final command is CHANGE which can work either
interactively or automatically. The command CHANGE
QUANTITY FOR PARTNO = "B1222" THRU IN-
VNTRY > PLINK would cause the system to pause
after displaying each line item containing part "B1222"
and wait for input. If the operator responded with an

In Part One of this series, I pointed out some serious de-
ficiencies in MDBS which would affect the usefulness of
the system in a production environment. The MDBS au-
thors, aware of these shortcomings, provide several
database utilities and additions as options. The most
popular optional utility, MDBS.QRS, is the query sys-
tem and report writer. This stand-alone program, sup-
plied as QRS.COM, is invoked by typing QRS and then
answering some questions relating to database name
and password (the question answering can be avoided
by constructing a startup file). The QRS program con-
sists of two unrelated parts: a non-procedural, English-
like query language for database interrogation with a
somewhat restrictive report writer facility; and an inter-
active environment for testing DML commands.

The query language part of this program is geared to-
wards allowing the non-programmer to look at and
change data in a MDBS database by writing simple
query commands. Database queries are invoked by the
commands, LIST, WRITE, STAT, and CHANGE. The
generic format of a command is:

< COMMAND > <FIND CLAUSE > < CONDITIONAL
CLAUSE > <PATH CLAUSE >

The FIND CLAUSE consists of a list of data item names
separated by commas. Optionally, the user may specify
expressions involving data items in place of the data
items themselves. The optional CONDITIONAL
CLAUSE allows selective use of data based on the val-
ues of user selected fields. The PATH CLAUSE
specifies the path of sets to be transversed in search of
the required data and is probably the biggest single
weakness in the package, since it requires that the non-
programmer have an intimate knowledge of the struc-
ture of the database. This weakness can be overcome in
the case of scheduled queries by predefining reports
using the macro definition facility (more about that
later).

If this is confusing, perhaps an example using the order
entry/accounts receivable database defined in Part One
of this series will help (See Figure 1 and Listings 1). The
LIST command simply prints the requested data in col-
umns on the CRT screen. Suppose we wanted a list of all
customers' names with their account numbers. This
query would be LIST NAME, ACCTNO THRU CUST
LIST. Since MDBS does not keep track of the implied de-
cimal in fixed decimal numbers, it is the responsibility of
the query writer to divide such numbers by the proper
scale factor. In our example, all decimal numbers must
be divided by 100, so a query to list part numbers, des-
criptions and prices from inventory must be written as
LIST PARTNO, DESC, PRICE1/1OOTHRU INVNTRY.
Using conditionals will allow you to find all customers
who owe money with the query LIST NAME,
BALANCE/100 FOR BALANCE > 0 THRU

9

amount, that amount would be recorded as the new
quantity; a carriage return would signify no change. The
system then would proceed to the next occurrence. This
might be used to selectively alter the amounts which
would be ordered of a part in short supply. The automa-
tic mode of CHANGE is used to implement global alter-
ations. The command CHANGE PRICE1

PRICE1 * .15 FOR PRICEl<3.00 THRU INVNTRY
would automatically cause a 15% increase in all
PRICE Is less than $3.00. Only one data-item type can be
changed at a time using this command. Furthermore,
the item changed cannot be the sort key of any sets
specified in the THRU clause.

Figure 1 Diagram of Sample DB

CUSTLIST
DEBITSSYSTEM]

CREDITS

R

E

R

S,

ORDERLST
SYSTEM

N

PLINK
JNE-ITEM

Listing 1 Data description for Sample DB 0230 RECORD DEBIT

0100 FILES B:SAMPLE .DB 1 512 0240 ITEM DATE IDEC 6

0110 DRIVE 1 1000 0250 ITEM DESC CHAR 12

0260 ITEM AMT IDEC 10

0120 PASSWORDS 0270 ITEM INVNUM IDEC 5

0130 ANYONE 255 255 PASSWORD 0280 ITEM PDATE IDEC 6

0140 RECORD CUSTOMER 0290 RECORD CREDIT

0150 ITEM NAME CHAR 30 0300 ITEM DATE IDEC 6

0160 ITEM ACCTNO BIN 2 0310 ITEM AMT IDEC 10

0170 ITEM ADDRESS CHAR 25 0320 ITEM AMTLEFT IDEC 10

0180 ITEM CITY CHAR 15

0190 ITEM STATE CHAR 2 0340 RECORD ORDER

0200 ITEM ZIP CHAR 9 0350 ITEM PONUM CHAR 12

0210 ITEM PHONE CHAR 12 0360 ITEM ACCTNO BIN 2

0220 ITEM BALANCE IDEC 10 0370 ITEM ORDDATE IDEC 6

0380 ITEM SHIPNAME CHAR 30

io

30 0760 SET LINE
30 0770
30 0780 OWNER ORDER
6 0790 MEMBER LITEM
1
10 0800 SET ORDER
5 0810
10 0820 OWNER SYSTEM
10 0830 MEMBER ORDER
1

0840 SET INVNTRY
0850

2 0860 OWNER SYSTEM
6 0870 MEMBER PART

0880 SET PLINK
10 0890
40 0900 OWNER LITEM
6 0910 MEMBER PART
6
6 0920 SET ORDERLST
2 0930
2 0940 OWNER SYSTEM
2 0950 MEMBER ORDER
2
6 0960 END

ITEM SHIPADD1 CHAR
ITEM SHIPADD2 CHAR
ITEM SHIPADD3 CHAR
ITEM SHIPDATE IDEC
ITEM STATUS CHAR
ITEM VIA CHAR
ITEM INVNUM CHAR
ITEM TOTAL IDEC
ITEM COST IDEC
ITEM1 NLINES BIN

RECORD LITEM
ITEM QUANT BIN
ITEM PRICE IDEC

RECORD PART
ITEM PARTNO CHAR
ITEM DESC CHAR
ITEM PRICE1 IDEC
ITEM PRICE2 IDEC
ITEM PRICE3 IDEC
ITEM INSTOCK BIN
ITEM INPROC BIN
ITEM ONORD BIN
ITEM REORDER BIN
ITEM COST IDEC

MAN 1:N
FIFO

AUTO 1:N
SORTED ORDDATE

AUTO 1:N
SORTED PARTNO

MAN 1:1
IMMAT

AUTO 1:N
SORTED ACCTNO

0390
0400
0410
0420
0430
0440
0450
0460
0470
0480

0490
0500
0510

0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620

0630
0640
0650
0660

0670
0680
0690
0700
0710

0720
0730
0740
0750

(continued next page) H

SET CUSTLIST AUTO 1:N
SORTED ACCTNO

OWNER SYSTEM
MEMBER CUSTOMER

SET ARLEDGER MAN

OWNER CUSTOMER
MEMBER DEBIT
MEMBER CREDIT

SET ORDERS MAN

OWNER CUSTOMER
MEMBER ORDER

1:N
SORTED DATE

1:N
FIFO

FIVE types of "Utility Queries": SET, EDIT, READ, DIS-
PLAY, and CALC, are supplied as user aids. The SET
command is used to change the value of environmental
parameters which are constants, and switches which
define the operating environment. A listing of these pa-
rameters is in Table 1. The syntax is simply SET param-
eter = value. SET also may be used to define column
headings which ordinarily default to the names of the
data-items displayed in the report.

EDIT, which is one of the most useful features of this
package, is used to define macros, synonyms and value
labels. Macro definitions allow the user to substitute
single word commands for text strings of arbitrary
length. Once a macro is defined, it is stored in the
database itself for future reference, and will remain ac-
tive until it is either altered or removed. Among the
many ways in which this facility can be used are defin-
ing often used or complex queries as macros, so that un-
skilled users can invoke reports via one word com-
mands. Another use might be the assignment of awk-
ward expressions to more meaningful synonyms. For
example, the term BALANCE/100 could be defined as
BAL or a repeatedly used multi-term path could be de-
fined as PATH1. Once such synonyms are defined, they
can be used in place of the terms they represent either
directly in queries, or in other macro definitions. The
EDIT command is also used to define label values for
different data item types in the database. In many cases,
single character data values are used to represent a lim-
ited range of choices that a variable may take such as
using R, B, and G instead of RED, BLUE, and GREEN as
the values of a data item representing color. In a report,
however, it is desirable to substitute the more descrip-
tive label for the compact value. EDIT allows for the au-
tomatic substitution of such value labels by facilitating
the construction of synonym tables for the data items re-
quiring such a resource on an item by item basis.
Synonym tables are, however, constrained to fit on one
database page as defined in the DDL description of the
database. In most cases this should not present a prob-
lem.

The READ command is used to read a disk file contain-
ing queries. Using this facility, complex sequences of
commands can be set up in a command file and auto-
matically executed. Typical uses are initializing envi-
ronment parameters to desired values and initiating
periodic report sequences. The command file can be
prepared by any standard text editor or the editing facil-
ities of the DDL which are ordinarily used to prepare
DDL specifications.

DISPLAY is the data dictionary utility. It functions in
the same way as a "help" command, by displaying a list
of either SET, RECORD, or ITEM types present in the
database. It can also be used to display the current col-
umn headings or the current environmental parameter
values. In our sample database, the command DIS-
PLAY RECORDS would produce the output "CUS-
TOMER DEBIT CREDIT ORDER LITEM PART". This
utility proves quite convenient when working with QRS
on an ad hoc basis without proper written database
documentation.

The CALC feature gives the user access to a simple on-
screen calculator which can be used to solve arithmetic
problems without leaving the QRS environment. The
result of the last calculation is stored in the variable "#"
and can be used in subsequent calculations or can be
substituted for numeric values in ordinary queries.

TABLE 1
Parameter Description Default Value

CW Console Width 80
CD Console Depth 24
PW Printer Width 120
PD Printer Depth 60
PM Printer Margin 0
LF File name to which query

results can be written none
SP Inter-Column Space 2
CP Console Page Character OOH
PP Printer Page Character OOH
OF Output Format (first digit is

number of digits preceding
decimal point (max 8), second
is number of digits after the
decimal (max 9) 89

Ml One character wild card //*//
MS Multi character wild card
TL Report Title none

Description if parameter is 1 Default

OPT1 I/O echoed to printer 0
OPT2 Reports displayed on console 1
OPT3 Suppress printer output 1
OPT4 Write output to disk 0
OPT5 Echo commands read from input files 1
OPT6 Display output from WRITE command

on console 0
OPT7 Print output from WRITE command on

the printer 0
OPTIO Print all error response in

Interactive DML queries 0
OPT11 Print all non-zero error response

in Interactive DML queries 1
OPT12 Suppress column headings 0
OPT13 Suppress value lablels 1
OPT14 List one term per line in LIST 0
OPT21 Print number of observations 1
OPT22 Print max 1
OPT23 Print min 1
OPT24 Print sum 1
OPT25 Print mean 1
OPT26 Print variance 1
OPT27 Print standard deviation 1

12

The Interactive DML part of the QRS package allows the
programmer to test DML commands in an interpretive
environment. By merely typing DML commands, the
results are instantly displayed, making this an impor-
tant tool for debugging, testing and learning. The use of
the Interactive DML is similar in concept to using a
BASIC interpreter in direct mode. You type commands
such as FMSK CUSTOMER, which stands for Find
Member using Sort Key, and after typing in the promp-
ted-for Key, the system returns the value of the error
code. You may then type GETC for Get Current of run
unit, and the system will display the found customer re-
cord. All the DML commands which are otherwise ac-
cessible only through applications programs maybe ex-
ecuted in this fashion. With this tool, the programmer
can poke around a database, looking at important val-
ues, checking relationships, and correcting potential
problems, thus saving the hours of programming it
would have taken just to construct test procedures or
utilities which will only be used one or two times. In my
opinion, the QRS package is worth having just for the
Interactive DML facility alone.

In operation the QRS package performed flawlessly.
The response time for producing reports is of course de-
pendent on the complexity of both the query and the
database, but I found that any report I tried ran to com-
pletion in under ten minutes. In any case, the speed
with which this package produces information should
exceed the equivalent function performed by a han-
dwritten application program because of the extra buf-
fer space inherent in the use of QRS. My only criticisms
of the package, other than the path clause requirements
mentioned earlier, are the severe limitiations of report
formats. The package is only capable of printing rough
looking columnar reports which are only suitable for
situations where content is the major consideration. In
many instances the only way to construct a variety of
commonplace professional-looking reports is to use the
WRITE command as a "front end" for other software.
For example, there is no direct way to print invoices or
statements with QRS despite the fact that all of the re-
quired information can be output. A top quality print
format feature is an addition which should be seriously
considered. Overall, considering the features of QRS, I
think it would be a foolish mistake for any serious
MDBS user to try to do without it. Next month, I will
conclude this series with a description of the Recovery/
Transaction Logging System, and the Dynamic Restruc-
turing System.

Table II

Package or version name: MDBS.QRS Version
1.02 for PL/I-80 with Z80

Price: $300.00

Systems available for: CP/M, North Star DOS

Required supporting software: MDBS or HDBS
and possibly a standard text editor

Memory Requirements: 52K minimum.

Disk capacity required: 160k minimum.

Utility programs provided: None

Record size & type limits: Types correpond to
database definition as defined using MDBS. Re-
cords may be of any size up to 65k. Practical limit
4k. Database size is limited by your hardware and
operating system.

Portability: Good portability between CP/M sys-
tems. Database can be selectively unloaded and
written to disk as a flat ASCII file using the WRITE
command.

User skill level required: Novice with some train-
ing in the structure of the database being queried.
A basic understanding of the MDBS data manipu-
lation language is necessary for use of the interac-
tive DML feature. Can be used by a total novice if
queries are set up and stored ahead of time.

Table III

Qualitative Factors

Documentation
oranization for learning 4
organization for reference 4
readability 4
includes all needed information 4

Ease of use
initial start up 5
conversion of external data 6
application implementation 3
operator use 6

Error recovery
from input error 3
restart from interruption 1
from data media damage 1

Support
for initial start up 4
for system improvement 4

(note that all error recovery depends upon proper back-
up procedures. The RTL module is designed to aid in
error recovery.)

* Ratings in the table will be in a 1-7 scale:
1 = clearly unacceptable for normal use
4 = good enough to serve for most situations
7 = excellent, powerful, or very easy depending on

the category.

(continued next page)
13

TABLE IV

Coming Soon...
Next month we'll be hearing more from Mike Karas on
Assembly Language and PL/I; Ward Christensen will
continue his tutorial on 8080 Programming.

For future issues Lifelines is also planning a review of
Pascal MT + , reviews of MAGSAM III and IV, Fabs, and
MicroSeed. Reports on various sort programs, a
wealth of CPMUG volumes, and a special series on lan-
guage interfaces lie ahead.

We like to hear what you think of Lifelines, and we're
eager to find out your opinions on the world of software
as a whole. So keep those letters coming!

Data Management Capabilties

A. Underlying Data Model:

1. Data Types— alphanumeric, numeric
2. Relationships— one to many, many to one, one

to one, many to many

B. Functions Provided:

1.a . Data dictionary maintenance— automatically
maintained internally by system.

b. Data reorganization and conversion— reor-
ganization is not possible with module. Limited
conversion facilities are provided by the CHANGE
command which allows numeric processing on a
global or local level. QRS also provides a value
label substitution facility.

2.a Data entry and editing— editing is provided
by the CHANGE command. Other data entry and
editing can be accomplished by using the interac-
tive DML commands in a similar manner to the one
you would use in an application program. No direct
facilities are provided for entry of new data.

b. Report generation— flexible content is avail-
able in a limited column format.

CP/M SUMMARY GUIDE
Tired of fanning through your CP/M manuals or writing
notes that remind you of the commands, functions and
error codes? Well it’s about time you ordered our CP/M
Summary Guide! Spiral bound and
handy to hold, our guide is a 60 -
page booklet summarizing the
features of CP/M (Ver. 1.4 & 2.X)
and 2 totally alphabetical listings
of the commands, functions,
statements and error codes of
MICROSOFT BASIC-80 Ver. 5.0
and CBASIC™ -2. Areas
summarized are in table form
and include all direct and
transient commands plus
MAC™, DESPOOL™ and
TEX™. Our booklet is a much
needed supplement to any of
the literature currently
available on CP/M and has
been recommended by Digital
Research.
P.S. Over 4000 users can’t be
wrong!
Ask your local computer store for our guide or send $6.95
plus $1.00 (postage and handling) to:
THE ROSETTA STONE, P.O. BOX 35, GLASTONBURY, CT
06025 (203/633-8490)

1
I
I
t

>*><•>»

3.a Data selection by predicate— Excellent sup-
port of complex predicates using conditional
clauses in QRS commands. Included all normally
used relations and boolean expressions.

b. Data joining & relating multiple data sets—
supports the powerful facilities provided by
MDBS.

c. Calculation on data— automatic calculation
of popular statistics on numeric data items either
globally for a report or at user specified multiple
break levels. Integral calculator provided for arith-
metic calculations based on input data. Query
commands support complex algebraic expres-
sions.

4.a Data independent application interface—
Database is fully independent.

OOPS!
On page 26 of t he August Lifelines
(Vo lume II, Number 3), the second
and th i rd sentences of the last para-
graph in the lefthand co lumn shou ld
read:

Name

Street _

City State Zip
CP/M™, DESPOOL™, MAC™ are registered trademarks of Digital Research.
CBASIC™ is a registered trademark of Compiler Systems.

Attention Dealers!
Th is means that if the rout ine is ca l led
with an a rgument of zero, the result is
the sampled va lue of register R. If
ca l led wi th an argument of one, then
the result is the sampled va lue of re-
g is ter R p lus 256.

If you are interested in se l l ing Lifelines, let
us know. We have a dealer package for you.
Write to: Dealer Sales Department, L i fe l ines
Pub l ish ing Corp. , 1651 Third Ave. , New
York, N.Y. 10028 . Or call (212) 722-1700
and ask for Susan Sawyer.

Terminal Talk IIIIIIIIIIIIIIIIIIH
by Steve Patchen

The f i r s t column j us t i nd i ca tes
whe the r or not the f unc t i on is
used in some way by the so f twa re .
The second column al lows en t r y of
the number of charac te rs al lowed
for in the i ns ta l l a t i on procedure
for the so f twa re . These cha rac -
ters cons t i t u t e the s t r i ng which
w i l l be sent to the t e rm ina l by
the so f twa re when the f unc t i on
must be pe r f o rmed . The t h i r d
column p rov ides a p lace to- note
whether a means is documented to
i n t r oduce a patch r ou t i ne which
w i l l handle spec ia l p rob lems at a
d i f f i cu l t i n s ta l l a t i on .

t i f y the assumpt ions about te r -
m ina l s wh ich so f twa re au tho rs
f requen t l y make and which cause
the so f twa re to be unusab le at
many i ns ta l l a t i ons . This a r t i c l e
w i l l be f o l l owed by one or more
a r t i c l es d i scuss ing the de ta i l s
of t e rm ina l i ns ta l l a t i on of one
or more so f twa re packages . A
compar i son of i ns ta l l a t i on ap-
proaches w i l l then be made along
w i t h some recommenda t i ons fo r
both so f twa re au tho rs and users .

I welcome any feedback and con-
t r i bu t i ons from readers and au-
thors du r ing the course of t h i s
ser i es .

INTRODUCTION

Contemporary so f twa re for smal I
compu te rs f r equen t l y t r i es to
take advan tage of CRT t e rm ina l
fea tu res . These fea tu res are us-
ua l l y p rov ided by t e rm ina l manu-
f ac tu re r s to a l l ow des ign of
better user-or i en ted i n t e rac t i ons
wi th the computer . Un fo r t una te l y
these manu fac tu re rs do not con-
form to the ex i s t i ng ANSI t e r -
m ina l s t anda rd or to any o the r
s tandard . Termina l f ea tu res , es-
pec ia l l y those r e l a t i ng to cu rso r
con t ro l , there fore vary cons ide r -
ab ly . This makes i t very d i f f i -
cu l t to w r i t e so f twa re for use on
non -spec i f i c CRT t e rm ina l s w i t h -
out g i v i ng up d i r ec t con t ro l of
the t e rm ina l ’ s cu rso r and h igh
speed c l ea r and r e -w r i t e capa -
bi I i t y .

There have been two bas i c ap-
p roaches to so l v i ng t h i s p ro -
b l em. The f i r s t is to w r i t e a
spec ia l ve r s i on of the so f twa re
for each t e rm ina l upon which i t
is i n t ended to run . The second
approach is to al low the user to
create a t ab le of i n f o rma t i on to
be used by the program to de f i ne
the t e rm ina l behav io r . The f i r s t
approach p rov ides the most r e l i -
ab le p rog rams because the te i —
minal i n t e rac t i on can be tested
by the p rog ram ’s au tho rs . The
second method has the po ten t i a l
for the w ides t use because i t can
be used by t e rm ina l s not con-
s i de red by so f twa re au thors . This
second approach runs in to a lo t
of p rob lems however. I t is t h i s
second approach and i t s p rob lems
which t h i s a r t i c l e w i l l d i scuss .

There are two major systems in a
t e rm ina l : the d i sp lay and the
keyboa rd . The two sys tems are
i ndependen t enough to be con-
s i de red sepa ra te l y . I w i l l there-
fo re put o f f d i scuss ion of the
keyboa rd un t i l a l a t e r a r t i c l e
and concentrate upon the d i sp lay
in t h i s a r t i c l e . The pu rpose of
t h i s a r t i c l e is to i den t i f y ter-
minal d i sp lay features which make
te rm ina l i ndependen t so f twa re
d i f f i cu l t to w r i t e ; and to iden-

The l i s t of f unc t i ons is sepa -
ra ted i n to t h ree g roups . The
f i r s t g roup cons i s t s of the
sc reen he igh t and w id th pa ra -
me te rs a l ong w i t h the d i r ec t
cursor pos i t i on ing command. These
two pa rame te rs are cons ide red
essen t i a l because they alone are
su f f i c i en t to give so f twa re com-
p le te con t ro l of the t e rm ina l .
M i c roP ro ’ s WordS ta r |TM) is an
example of the use of these fea-
tu res alone to con t ro l the ter-
m ina l . Other t e rm ina l f unc t i ons
can be u t i l i zed to p rov ide better
pe r f o rmance i f t hey are ava i l -
ab le . But i f an i ns ta l l a t i on ’ s
te rm ina l has d i r ec t cursor pos i -
t i on i ng , WordStar can be run on
i t . The second group i nc l udes
those cu rso r con t ro l f ea tu res
which might be used by so f twa re
in add i t i on t o , or i ns tead of
d i r ec t pos i t i on ing . In my ex-
pe r i ence , t h i s group of con t ro l s
Is assoc ia ted w i t h assumpt ions
f requen t l y made by so f twa re au-
thors which cause the most pro-
blems in us ing t he i r so f twa re at
many s i t es . The l as t g roup are
usua l l y o f fe red as op t i ons which,
i f implemented, enhance per fo i—
mance of the so f twa re .

TERM INAL FEATURES

The fea tu res which most enhance
the i n t e r f ace w i t h a t e rm ina l
user are the ab i l i t y to c lea r the
sc reen and re -w r i t e i t or to
w r i t e a new screen of text , and
the ab i l i t y to p lace the cursor
at any l oca t i on on the screen In
order to w r i t e to tha t l oca t i on
or to accept keyboard en t ry from
tha t l oca t i on . Ed i t i ng is en-
hanced by the ab i l i t y of the
te rm ina l to i nse r t b lank l i nes on
the screen and sc ro l l the lower
I ines out of the way, or to de-
le te a screen l i ne and sc ro l l the
lowe r l i nes up to r ep lace the
removed l i ne , and by the ab i l i t y
to erase to the end of an i nd i v i -
dual l i ne on the sc reen . D i f f e -
ren t k i nds of cha rac te r h i gh -
l i gh t i ng make i t eas ie r to v i su -
a l l y sepa ra te t ex t and sc reen
fo rmats and help i ns t r uc t i ons . I t
is impo r tan t to know what happens
to the cursor when i t a t tempts to
move o f f s c reen at any of the
four edges . Assump t i ons abou t
these edges and the cursor move-
ment from the edges are the most
f r equen t sou rce of p rob lems in
p rog rams i n tended to be con f i -
gu red by t he use r f o r h i s
t e rm ina l .

Table I l i s t s t e rm ina l f unc t i ons
which are most f r equen t l y used by
so f twa re . The t ab le has t h ree
columns for each fea ture l i s t ed .

15

The cursor pos i t i on ing command is
usua l l y a s t r i ng of from 3 to 8
charac te rs wi th the row and co-
lumn pos i t i on appear ing at var-
ious p l aces in the s t r i ng . The
row and column pos i t i on charac -
ters are f r equen t l y composed of a
pos i t i on number .added to an o f f -
set to pu t the number i n t o a
p r i n tab le cha rac te r r ange . Not
a l l t e rm ina l s use a con t i nuous
range of such codes . The ANSI
s tandard for cu rso r pos i t i on ing
requ i res tha t the l i ne and column
pos i t i ons be ASCI I numer i c
charac ters . A few t e rm ina l s ex-
pec t the l i ne and co lumn to be
sen t w i t h sepa ra te l ead in
s t r i ngs . Te rm ina l s also vary in
expec t i ng the l i ne or column to
be sent f i r s t in the s t r i ng .

Because the behav iou r of the
cu rso r as i t l eaves any of the
four edges of the screen va r i es
cons ide rab l y f rom t e rm ina l to
t e rm ina l i t is necessary to d i s -
cuss the cu rso r pos i t i on ing in
re l a t i on to t hese edges . As-
sumpt ions abou t t h i s behav iou r
are most d i s t r ess ing to someone
t r y i ng to i ns ta l l so f twa re for a
pa r t i cu l a r t e rm ina l . Typ i ca l l y ,
i f the cu rso r goes beyond the
las t column of a l i ne i t ends up
on the f i r s t pos i t i on of the next
l i ne . However, o ther behav iour is
poss ib l e and not uncommon. The
most no tab le a l t e rna t i ve is tha t

**
Al lows pa t ch ing spec ia l sub rou t i ne *

* Number of charac ters a l l owed for con t ro l s t r i ng : *
* __________________________________ . . ♦
* Feature used by the so f tware : : *
** . . *
* Terminal fea tures * : : *
**
* Essen t i a l features *
»<.*♦*<*<**<*##************************#*#♦♦*«*********

* screen he igh t and width de f i nab le : : : *
♦ . . *
* Cursor pos i t i on ing : : : : *

* a l lows ASCII d i g i t s for l i ne&co l : : : *
* ____ . ____ . ____ *
* a l lows separa te lead in for l&c : : : *

* a l lows e i t he r l i ne / co lumn f i r s t : : : *
**
* A l t e rna te cursor pos i t i on ing *
**
* cursor up, down, l e f t , r ight
*
* c lea r screen

* home

* backspace
*
* ca r r i age re tu rn
*
* I i nefeed**

the cu rso r is not a l l owed to
l eave the l i ne w i t hou t spec ia l
pos i t i on ing commands. Al l over-
f l ow cha rac te r s are p r i n ted on
top of each o the r at the l as t
cha rac te r pos i t i on . Some te i —
mina l s do t h i s l i ne wrap-around
going to the r i gh t but not to the
l e f t . Behav iou r at the top and
bottom of the screen also va r i es .
F requen t l y p r i n t i ng a cha rac te r
at the l owe r r i gh t hand co rne r
pos i t i on causes the sc reen to
sc ro l I up and the cursor is pos i -
t i oned on the l e f t of a b l ank
l i ne at the bottom of the screen.
Aga in some t e rm ina l s do not
sc ro l l wh i l e o thers o f fe r sc ro l l -
ing and none sc ro l l i ng modes. The
up, down, l e f t , r i gh t , backspace
and l i ne feed f unc t i ons from the
group are d i r ec t l y i nvo l ved w i th
these behav iou r d i f f e rences . The
d i rec t cu rso r pos i t i on ing func-
t i on can also be a f fec ted by edge

* Other features which migh t be used to enhance per fo rmance*
**
* Erase to end of l i ne : : : :

* De le te cursor l i ne & move l i nes up : : : :
* .
* I nse r t b lank l i ne at cu rso r : : : :
* . _ _ . ____ - . _ ____ .
* Highl i gh t i ng on /o f f : : : :

* Terminal i n i t i a l i za t i on : : : :

* Session t e rm ina t i on : : : :
* _____ . _____ . _ - _ .

* Transmiss ion de lays : : : :
* _____ _____ _____

* D i sp lay at l as t column of las t l i ne : : : :
* . ___ . ___ ___ .
* Dele te /Backspace de fea t : : : :
**

16

d i sp layed on a l i ne . The number
of l i nes are the d i sp layed l i nes .
The charac te r set w i l l p robab ly
be 64 ASCII cha rac te r s or 96
ASCII or 96+ ASCII. The ”+” i nd i -
cates spec ia l g raph i c cha rac te rs
or d i sp layab le con t ro l cha rac -
ters. L ine wrap around i nd i ca tes
tha t i f the cu rso r is advanced
past the end of a l i ne i t goes to
the beg inn ing of the nex t l i ne .
Sc ro l l i ng desc r i bes the ac t i on of
moving the d i sp layed l i nes up to
make a new b lank l i ne at the
bo t t om of the sc reen when the
cursor a t tempts to move down o f f
the bo t t om edge of the sc reen .
Some t e rm ina l s also sc ro l l down
at the top of the sc reen . There
are seve ra l t ypes of d i sp lay
accen t i ng In use. Co lo r change
can be I i s ted under reverse video
or g raph i cs . A few t e rm ina l s
per fo rm l ine i nse r t i on and de le -
t i on . This usua l l y is accompanied
by sc ro l l i ng up or down. E ras ing
a l l or pa r t of a l i ne is some-
t imes ava i l ab le . The be l l is
usua l l y e i t he r a speake r or a
buzzer . De ta i l s about the code to
use to invoke the va r i ous cursor
con t ro l features and remarks a-
bout how they behave are p rov ided
for by the l as t sec t i on of the
form.

In order to ass i s t the d i scuss ion
of the i ns ta l l a t i on of so f twa re
for d i f f e ren t t e rm ina l s , a com-
p le ted t ab le w i l l be i nc luded for
each t e rm ina l cons idered in each
a r t i c l e of t h i s se r i es along wi th
a comp le ted Tab le I f o r each
so f twa re package d iscussed.

(See next page for the t e rm ina l
features t ab le .)

is r equ i red to comp le te the job.
A few t e rm ina l s r equ i re as many
as e i gh t - cha rac te r s for some of
the command s t r i ngs .

Some t e rm ina l s p rov ide an auto-
ma t i c l i ne feed cha rac te r upon
rece i v i ng a ca r r i age re tu rn . This
is usua l l y an op t i on which can be
sw i t ched o f f at the t e rm ina l .
Thus so f twa re usua l l y sends a
ca r r i age re tu rn then a l i ne feed.
Not a l l t e rm ina l s behave we l l
even for t h i s bas i c ope ra t i on ,
however. The S0L20, for i ns tance ,
l i kes to have the l i ne feed sent
f i r s t . Sending the ca r r i age re-
t u rn f i r s t e rases the l i ne the
cursor is l eav ing .

There are a few new t e rm ina l
models which are too i n t e l l i gen t
for many app l i ca t i ons . They have
so many modes and spec ia l func-
t i ons t ha t so f twa re is a lways
t r i pp ing over them. These t e r -
m ina l s r equ i re spec ia l i n i t i a -
l i za t i on and somet imes de - i n i t i a -
l i za t i on to ach ieve p red i c tab le
behav iour •

In order to p rov ide backspacing
i ns tead of echo ing de le ted
characters some spec ia l ve r s i ons
of CP/M p rov ide a backspace -
space -backspace in r esponse to
the cha rac te r sen t to the t e r -
minal f o l l ow ing the entered back-
space or de le te . This i n t e r f e res
w i t h cu rso r pos i t i on ing as a
response from so f tware . WordStar
p rov ides a defeat for t h i s fea-
ture on systems which r equ i re i t .

behav iour when the s t r i ng to be
d i sp layed or the input which is
expected exceeds the l i ne l eng th .
WordS ta r avo ids p rob lems by
t rack ing each cha rac te r p r i n ted
or input and by making what- to-
do-next dec i s i ons when the end of
l i ne is reached.

The c lea r screen and home func-
t i ons are r e l a ted because a c l ea r
sc reen f unc t i on usua l l y does a
home a lso. The D ig i t a l Equipment
VT52 t e rm ina l is an excep t i on
because you must independent ly do
a home and then do a c l ea r to end
of sc reen . The Zen i t h H89 has
func t i ons s im i l a r to the VT52 but
also p rov ides a combined home and
c lea r sc reen . There are a few
te rm ina l s which do not r ecogn i ze
the ASCI I backspace charac te r 08
to move the cu rso r l e f t . Us ing
th i s character w i t h i n a program
and not a l l ow ing i t to be con f i -
gured at i n s ta l l a t i on t ime is a
source of p rob lems.

So f twa re is used to send out nu l l
cha rac te r s a f t e r the ca r r i age
return sequence on p r i n t i ng ter-
m ina l s , to a l l ow t ime fo r the
mechan i ca l r e tu rn of the cai—
r iage . CRT t e rm ina l s do not re-
qu i r e t h i s at low speeds , but
most t e rm ina l s do r equ i re de lays
fo r ce r t a i n commands (such as
c l ea r sc reen) at t r ansm iss ion
speeds in excess of 9600 baud.
(In many cases t e rm ina l s runn ing
at 19200 baud w i l l r equ i re de lays
ca l l i ng for 30 to 50 nu l l s . Some
commands may requ i re de lays in
mid-sequence; in t h i s case nu l l s
would corrupt the command s t r i ng .
Furthermore, 50 nu l l s w i l l pro-
v i de a seem ing l y i n t e rm inab le
de lay I f the p rog ram is ever
accessed at 300 baud via modem. A
more genera l and e l egan t so lu t i on
to the p rob lem of f l e x i b l y pro-
v i d i ng necessary t im ing de lays is
to a l l ow so f tware delay loops to
be se lec t i ve l y p laced e i t he r be-
fore, du r i ng , or a f ter an escape
sequence . Ed i t o r .) I have ob-
se rved a l o t of con f i gu ra t i on
tab les which do not a l low enough
charac ters for the command se-
quences on some t e rm ina l s . The
D ig i t a l Equipment VT-52 t e rm ina l
requ i res four charac ters to c l ea r
the sc reen . The cu rso r is sen t
home w i t h a two -cha rac te r se-
quence and then a c l ea r to end of
screen sequence of two-charac ters

D i scuss ion of t he t e rm ina l
features t ab le :

The f o l l ow ing t e rm ina l fea tu res
tab le puts a l l these f unc t i ona l
de ta i l s in one p lace for so f twa re
i ns ta l l a t i on and t e rm ina l com-
pa r i sons . If severa l models of
one manu fac tu re r have s im i l a r
features or i f some models have a
subse t of f ea tu res of ano the r ,
they can be l i s t ed t oge the r .
L i kew ise , models of any manufac-
t u re r wh ich comp le te l y emu la te
the model being d iscussed should
be l i s t ed as a r e l a ted model.

The l i ne l eng th desc r i bes the
number of charac ters which are

(continued next page) 17

Calling SORT
As A Subroutine

From MBASIC SORT
This information comes to us courtesy of
MicroPro Internat ional Corporation.

Edi tor ’s Note: While th is appl icat ion note
is spec i f i c to the SUPER S0RT/BASC0M com-
b inat ion, the same approach can be general-
ly applied to assembly language inter faces
to compiled languages. L i f e ! i nes plans in
the future to p r in t an a r t i c l e f u l l y de-
scr ib ing the dos and don’ts of in ter fac ing
to and between the wide va r i e t y of lan-
guages avai lable for micros.

This app l i ca t i on note desc r ibes a means
whereby SUPER SORT may be l i nked wi th
MBASIC rel f i l e s produced by the Microsof t
BASIC Compiler. I t assumes the use of SUPER
SORT I’s SORLIB and M ic roso f t BASIC de-
velopment package i nc l ud ing the BASCOM
BASIC Compiler, the M80 macro assembler and
the L80 l ink ing loader.

Because of MBASIC’s l im i t ed programmer
contro l over the organizat ion of var iable
length and var iable type data items, th is
note wi l l concern i t se l f with an assembly
language in ter face to the SORSUB sor t ing
rou t ine in SORLIB. This assembly language
module, which is l inked with and cal led by
the MBASIC program, provides al l the para-
meters required by the SORSUB sor t ing mo-
dule to ef fect a single sort operation. All
the so r t /me rge f i l e names, input a t t r i -
bu tes , ou tpu t a t t r i bu tes , key/sel ect/ex-
clude opt ions, and user ex i t rout ines are
speci f ied in th is module after which con-
t ro l is t ransferred to the SORSUB rout ine.
After sorting/merg ing is complete control
is passed back to the MBASIC main program.
All the sor t ing options to be invoked in
the assembly language module are described
in the SUPER SORT Programmer’s Guide.
Mu l t i p le modules may be wr i t t en to support
user in te rac t ive sor t ing; i t must be noted,
however, that al l sort spec i f ica t ions are
frozen at l ink time. This means that al l of
the parameters such as record length, sort
keys and f i l e names cannot be changed dur-
ing the execution of the program.

Passing Control to SUPER SORT

In th is example a simple cal I without para-
meters executed from the BASIC program

♦*****«******»»*»*«**♦»***»****«*,»*,,«* ♦*»»»<»«»»,»»*,
* TERMINAL FEATURES ***
* Terminal Model & Manuf acturer : *

*
* re la ted models:
*

*
*

* Screen Format- *
* Line length: *
* Number of l ines: *
* Character set: *
* Line wrap-around *
* Scrol l ing: *

*
* Display Accent ing- *
* Under 1 i ne: *
* Reverse video: *
* In tens i f ied video: *
* Graphics:
*

*
*

* Ed i t i ng- *
* 1nsert 1 i ne: *
* Delete l ine: *
* Erase 1 i ne: *

* Bel 1 or Buzzer-
*

*

* Features which e f fec t cursor pos i t ion- *
*
* feature
*

code remarks *
_ *

* HOME *
*CLEAR SCREEN *
*clear to end of screen . *
*G0T0XY *
* uses ANSI Standard . *
* 1 i ne or column f i r s t *
* command form *
* o f fse t for binary numbers *
* erase to end of 1 i ne . *
* CURSOR LEFT *
* backspace *
* CURSOR RIGHT *
* CURSOR UP *
* scrol 1 at top? *
* CURSOR DOWN *
* scrol 1 at bottom? *
* L 1NE FEED *
♦scroll at bottom? *
* CARRIAGE RETURN *
* auto 1 i nefeed *
* newl i ne *
* TAB *
* last column of last l ine behaviour *
**

Don’t Forget...
If your subscription began in October of 1980 with Vol-
ume One, Number Five, you’ve heard from us about re-
newing. Time is getting short, so send in your renewal
form right away. You won’t want to miss a single issue;
Lifelines is getting bigger and better all the time.

18

space in the de f i n i ng module.passes contro l to the assembly language module which
In t u rn ca l l s the SORSUB so r t i ng sub rou t i ne . The
BASIC program looks l ike t h i s :

100 CALL SORT1

where S0RT1 is dec la red as an en t r y po in t in the
assembly language rou t i ne that is se t t i ng up the
parameters for SORSUB.

See L i s t i ng I for the assembly language module .
L i s t i ng I I is an example for de f i n i ng SUPER SORT’S
work space in the assembly language module.

Parameter Passing from MBASIC

In some app l i ca t i ons which requ i re more than one
type of sort opera t ion the d i f f e rences between the
two sorts is so t r i v i a l that there is no j us t i f i ca -
t ion for cons t ruc t ing two separate parameter b locks.
Let us consider an app l i ca t i on which involves two
d i f f e ren t key f i e l ds . In th is instance i t is only
necessary to pass the changing parameter in the CALL
to the assembly language module. The assembly lan-
guage module then does the actual mod i f i ca t i on to
the parameter block and the ca l l to SORSUB is made
as desc r i bed above. An example in BASIC and the
beginning of the assembly language segment to handle
the parameter pass is shown below:

50 REM I? REPRESENTS THE FIELD TO BE USED AS THE KEY

Parameter Block De f i n i t i on

The parameter block for SUPER SORT conta ins a l l the
in fo rmat ion needed to perform a so r t i ng opera t ion .
When SORT.COM is executed an equ iva len t of the para-
meter block is created as the operator inputs to the
keyboard, or as a CFILE is read. When the REL f i l e
vers ion is used, however, the programmer must con-
struct one in memory. When using the MBASIC Compiler
i t is advised that the parameter block be spec i f i ed
in assembly language. Although i t may be argued that
an MBASIC array may be used to construct the para-
meter block the mechanism to do so is more comp l i -
cated than to wr i t e i t in assembly language. Also i f
f i l e size is a cons idera t ion assembly is much to be
p re fe r red . To f ac i l i t a t e the cons t ruc t i on of the
pa rame te r b lock a sample l i s t i ng is p rov ided .
(See L i s t i ng I I I .) The programmers’ guide sec t ion of
the SUPER SORT manual also conta ins a de ta i l ed de-
sc r i p t i on .

L i s t i ng I I I shows a parameter block example which
does a s imple sort of the input f i l e CUSTOMER.DTA
and produces the output f i l e NAMESJDTA.

100 l?=1 :REM USE FIELD 1 AS A KEY
110 CALL SORT(I?)

200 l?=5 : REM USE FIELD 5 AS A KEY
210 CALL SORTCI?)

The assembly language segment looks l i ke t h i s :

SORT EQU $
; HL REG. CONTAINS A POINTER TO THE
; PARAMETER WHICH REPRESENTS THE KEY
; FIELD OF THE SORT

MOV E,M ;get low order byte of parameter
INX H
MOV D,M ;get high order byte of parameter
XCHG ; actual parameter is in HL
SHLD KEYFLD ;put i t in the parameter box

Mu l t i p l e Assembly Language In te r faces

The above procedure should be su f f i c i en t for s imple
app l i ca t i ons . In many cases, however, i t is neces-
sary to i n i t i a t e more than one type of sort from the
BASIC program. This can be most s imply handled by
coding two separate assembly language in ter faces and
then ca l l i ng the appropr ia te one from BASIC. Each
module, once I t had set up the parameters, would
then ca l l the SORSUB so r t i ng subrout ine. An i l l u s -
t r a t i on of the BASIC program segment f o l l ows :

100 IF A?=1 THEN CALL S0RT1
200 IF A?=2 THEN CALL S0RT2

where S0RT1 and S0RT2 are the entry po in ts to two
separate assembly language modules each of which has
I t s own pa rame te r b l ock . When us ing t h i s method
space can be saved by de f i n i ng the work space in
only one of the modules. This is done by dec la r i ng
the label at the beginning of the work space to be a
publ lc labe l to o the r modu les . The labe l Is then
referenced by the other modules as an external la-
bel. I t Is impor tant to never spec i f y a work length
which Is longer than the actual length of the work

; • • .and so on. • • •

where KEYFLD is the labe l of the po in t in the
parameter block where the key f i e l d is located. For
a comp le te desc r i p t i on of pa rame te r pass ing in
MBASIC refer to the Assembly Language Subroutines
appendix to the MBASIC manual.

L i nk i ng I t Al I Together

Once al I of the program segments have been ed i ted ,
compiled and assembled i t is t ime to l ink them al l
together with the L80 l i nk i ng loader, to create a
<f i lename>.C0M f i l e ready for d i r ec t execut ion under
CP/M. An example of l i n k i ng a BASIC program with an
assembly language in te r face which uses ca l l s to the
SORLIB SUPER SORT I i b ra ry goes something l ike t h i s :

A>L80

(L80 sign on message)

(continued next page)

19

*CUSTSORT, BASL I B/S, SORT, SORL I B/S, CUSTSORT/N/E

Where:
CUSTSORT is the user suppl ied BASIC program

BASLIB/S i n i t i a t es a search t h rough the BASIC
I ib ra ry suppl ied with the compi ler to sa t i s f y
undefined labe ls .

SORT is the assembly language module which con-
t a i ns a ca l l to g l oba l l abe l s in the SORL I B
I i b ra r y .

SORL I B/S i n i t i a t es a search through the SORL IB
l i b ra r y to sa t i s f y the r ema in ing unde f i ned
I abel s.

CUSTSORT/N/E d i r ec t s the l i nke r to wrap th ings up
and save the resu l t in CUSTSORT.COM.

If there is more than one BASIC program being l inked
they should a l l go before BASLIB/S on the command
l ine . In the same way a l l assembly language modules,
i f more than one, must go before SORL I B/S.

Conclusion

The p reced ing app l i ca t i on note is by no means a
complete desc r i p t i on of the poss ib i l i t i e s of MBAS I C
ca l l i ng sequences to SORSUB. The basic technique of
using an assembly language in te r face to e f fec t the
ca l l , however, should prove f l ex i b l e enough to ac-
commodate most a l l app l i ca t i ons .

LISTING I

The assembly language module looks l i ke t h i s :

ENTRY S0RT1 ; decl are the entry and externa l labels
EXT SORSUB, $MEMRY ;** * SEE NOTE BELOW FOR SMEMRY ***

S0RT1 EQU

LHLD
XCHG
LXI
LXI

CALL
RET

SORARS:
DW
DW
DW

$

SMEMRY

H,PARBLK
B, SORARS

SORSUB

; po in te r area
WLEN
SSTAT
COLTAB

; th i s is where control passes from BASIC

;get the l oca t i on of the beginning of free space area

; l oca t i on of the parameter block
; l oca t i on of po in te rs -work length
; -s tatus return
; - a l t seq tab le
;cal 1 to the SUPER SORT rou t i ne
; return to BASIC

; po in te r to the work area length
; po in te r to the s tatus return va r i ab le
; po in te r to a l t e rna te sequence tab le

WLEN: DW 0 jac tua l work length area (0 ind ica tes al l free space)
SSTAT: DS 2 ;make room for status return
COLTAB EQU
PARBLK EQU

$
$

ja l t e rna te co l l a t i ng sequence would go here i f needed

$MEMRY NOTE: In order for SUPER SORT to work at maximum speed a large work space is des i rab le . In
th i s example the symbol SMEMRY (generated by L80 dur ing l inkage) conta ins a po in te r
to the top of the program being l inked. Unfor tunate ly MBASIC uses the free space
area for storage of s t r i ng va r iab les and poss ib ly for other purposes. This means
that i f your program uses s t r i ngs or you experience i nexp l i cab le r esu l t s after a
sort which uses the free space area for work space then you must set aside another
place for SUPER SORT to work.

LISTING II

Below is an example for de f i n i ng SUPER SORT’S work space in the assembly language module:
ENTRY
EXT

S0RT1
SORSUB

; decl are the entry and externa l labels

S0RT1 EQU $; th i s is where contro l passes from BASIC
LXI H,PARBLK ; l oca t i on of the parameter block
LXI D,W0RK ; l oca t i on of the beginning of the work space
LXI B, SORARS ; l oca t i on of po in te r s -work length

; -status return
; - a l t seq tab le

20

CALL SORSUB ;cal I to the SUPER SORT rou t i ne
RET ; return to BASIC

SORARS: ; po in te r area
DW WLEN ; po in te r to the work area length
DW SSTAT ; po in te r to the s tatus re turn va r i ab le
DW COLTAB ; po in te r to a l t e rna te sequence t ab le

WLEN: DW 1000H ; ac tua l work leng th area
SSTAT: DS 2 ;make room for s tatus return
COLTAB EQU $ ja l t e rna te co l l a t i ng sequence would go here i f needed

•
WORK: DS 1000H ;make room for the work space

PARBLK EQU $; parameter b lock starts here

LISTING I I I

This parameter b lock example does a s imp le sort of the input f i l e CUSTOMER.DTA and produces the
output f i l e NAMESJ3TA:

**
* BEGINNING OF SORSUB PARAMETER BLOCK *
**

PARBLK EQU $
I RECL: DW 128 ;maximum record length for input f i l e s
CRECL: DW 0 ; record length for output f i l e

; 0=same length as the input f i l e
DB 0,0 , 0,0 ; reserved

ICRDF: DB 1 ; i nput f i l e type
; 1=cr -de l im i t ed
; 2= f i xed - length
; 64=var fab le
; 128=re l a t i ve

IEOF: DB 0 ; inpu t f i l e s end of f i l e op t i on
;0=de fau l t
; 1=no -s ing le-z (sum 1 and 2 for va r i ab le and r e l a t i ve type
;2=no-zzz
;4= f f zzz

CFNAME: DB 0 , ' NAMES DTA jou tpu t f i l e name, (FCB format)
OFOP: DW 0 ; fo r output disk chage b i t 15=on (80H)
OCRDF: DB 1 jou tpu t f i l e type (same op t i ons as ICRDF)
OEOF: DB 0 ; output f i l e end -o f - f i l e op t i on

;0=normal
; 2=f fzzz f i l l

WDRV: DB 0 ; work f i l e dr i v
;0 =current logged d r i ve
;1 or *A’=A:
;2 or ’ B '=B: e tc .

RNOUTF: DB 0 ;non-0 for R-OUTPUT
KANPUT: DB 0 ;non-0 for KR-OUTPUT
TAGSF: DB 0 ;non-0 for TAGSORT

DB 0 ; reserved
KONLYF: DB 0 ;non-0 for K-OUTPUT
KPOUTF : DB 0 ;non-0 for KP-OUTPUT
POUTF: DB 0 ;non-0 for P-OUTPUT
XIT1F: DB 0 ;non-0 to invoke use of user i ns ta l l ed XIT1
XIT2F: DB 0 ;non-0 to invoke use of user i ns ta l l ed XIT2
PRNLVL: DB 5 jp r l n t level 0 (no th i ng p r i n ted) to 5 (f u l l p r i n t)

•
DB 0 ; reserved

•
THIS MARKS THE END OF THE FIXED LENGTH SECTION OF THE PARAMETER BLOCK

21

* SORT INPUT FILES *
♦**♦♦**♦**♦♦**

NOSORFL: DW 1 jnumber of sort f i l e s , 1 -32 .
;may be 0 i f me rge -on l y f i l e s are g i ven

; THE NEXT FOUR ITEMS ARE REPEATED FOR EACH SORT INPUT FILE
; OMIT IF NONE

. *♦***#*******#******♦*♦♦******♦##*♦**♦*♦****♦*♦♦**#*##♦*♦*♦*♦**♦*#**♦**#♦♦#*##***#***#♦♦
DB 0, ’CUSTOMERDTA’ ; sort i npu t f i l e d r i ve and name (FCB format)
DW 0 ; reserved
DW 0 ; s t a r t i ng record (0=beg i nn ing of f i l e)
DW 0 pend ing record (0 or 0FFFFH=ent l re f i l e)
.***<

DW OFFFFH ;mark end of i npu t sort f i l e s

» * MERGE INPUT FILES *
>

NMOFL: DW 0 ; number of me rge -on l y i npu t f i l e s , 1 -32 .
;may be 0 i f so r t - on l y i npu t f i l e s are g i ven

; THE NEXT TWO ITEMS ARE REPEATED FOR EACH MERGE INPUT FILE
; OMIT IF NONE
; (de le te I f merge f i l e s are used)

. ***♦**♦#*♦********♦********#*♦#***♦#*♦*♦♦*♦♦♦*****♦**♦#*****♦**#♦#**♦*#*#♦***♦#*##*♦♦##
;DB 0, ’MERGE DAT’ ; me rge -on l y f i l e name, (FCB format
;DB 0 ,0 ,0 j reserved
;DB 0 ,0 ,0
»

DW OFFFFH ;mark end of merge i npu t f i l e s

* KEY FIELDS *

NKEX: DW 1 ; number of key f i e l d : 1 to 32

THE NEXT THREE ITEMS ARE REPEATED FOR EACH KEY
MUST BE AT LEAST ONE KEY

.******♦♦♦#*♦**♦**##♦*♦**♦♦***♦#♦#*♦♦***♦♦♦♦♦*♦**♦****♦#♦♦***********♦***♦♦********♦***♦
DW 1 ;s ta r t co lumn (pos i t i ona l f i e l d)

; o r f i e l d number (comma- de I im i t ed f i e l d)
DW 30 ; f i e l d l eng th in bytes (maximum l eng th for comma-del Iml ted f i e l d)
DW 1 ; f i e l d type and a t t r i bu tes (add i t i ve)

; ATTRIBUTE DECIMAL HEX BIT #
; comma-del im i t ed 1 1 0
; numer i c -asc i i 2 2 1
; upper-case 8192 2000 13
; r i gh t - j us t l fy 64 40 6
; 1 o—h i 4 4 2
; mask-par i t y -b I t 16384 4000 14
j ebcd i c 20480 5000 12+14
; a 1 tseq 1024 400 10
; twos-comp 1 ement 32 20 5
; I nteger 36 24 245
; f l oa t i ng -po in t 16 10 4
; packed bed 128 80 7

22

; descending
; (om i t for ascending) 256 100 8

. ***

DW OFFFFFH ;mark end of keys

; * SELECT FIELDS *
. *****************
>

NSEL: DW 0 ;any value 1-32 to use record se lec t i on

• PROPERLY FORMATTED SELECT SPECIFICATION STRINGS WOULD BE INSERTED HERE. THE FORMAT
; FOR RECORD SELECTION IS FULLY DESCRIBED IN SORSUB RECORD SELECTION SECTION OF THE
; SUPER SORT PROGRAMMING GUIDE.

DB OFFH ; marks end of record se lec t i on s t r i ng

; * THIS IS THE END OF THE SORSUB PARAMETER BLOCK *
. ***
9

END

to re tu rn a more ’ random’ seed.
Un fo r t una te l y , i t does not do
what Mr. Reinders most wanted his
sub rou t i ne to do - p rov ide a
random number en t i r e l y by the
compute r - un touched by human
hands. Mr. Kow i t t ’ s so lu t i on is
more e l egan t than M ic roso f t ’ s ,
but i t su f f e r s i f a long running
program ca l l s the subrout ine many
t imes but o therw ise has no need
for conso le i npu t . Th is m igh t
then force some unfor tunate per-
son to stare at a tube for hours
jus t to s t r i ke a key on cue. (I f
the computer re leased a pretze l
each t ime . . .)

Note: Mr. Re inde rs ’ s method is
adequate for most purposes, but
i t w i l l not return the best pos-
s ib le pseudo-random seed. This
may be demonstrated by running a
program which does the f o l -
lowing :

Mod i f y the sub rou t i ne so t ha t
only the contents of the R reg i s -
ter is r e tu rned . Cal I the sub-
rou t i ne N*128 t imes, (where N may
be any pos i t i ve number, and 2 < N
< 50 works n i ce l y) . Count the
number of occu r rences of each
d i f f e ren t r e tu rned va lue . (The
program could say something l ike
LET NUM(RV)=NUM(RV) + 1 , where RV
is the returned contents of the R
reg is te r) . If the array is then
p r i n ted , very no t iceab le patterns
w i l l usual ly be seen.

A Reader's Comment ■llllllllllilllll
To the Ed i t o r :

I rea l ly have no th i ng but adm i ra t i on for James R. Re inde rs I s i d
indus t ry in programming a true random func t i on for M ic roso f t BASIC. I
do f ind f au l t , however, with the concept of tak ing a 747 je t l i ner to
get from Brooklyn to the Bronx.

I am, therefore, enc los ing my BASIC Sub-rout ine for a r r i v i ng at a true
random number, in the interpreted or compi led vers ion of BASIC-80,
which is shorter, s imp le r and much more ve rsa t i l e .

10 ’Random Funct ion Test
20 ’
25 DEF I NT
30 GOSUB 180
40 PRINT INT(RND*100)
50 END
50 i ********************************
180 PRINT” PRESS THE SPACE BAR WHEN YOU ARE READY ” .-PRINT
181 N=RND
182 N=N*2 : IF N>32000 THEN N=N/3
183 IF I NKEY$<>CHR$ (32) THEN 182
184 N=INT(N) : RANDOM I ZE (N)
185 RETURN

Bob Kowi t t
The Computer Consul tant
E. Meadow, N.Y.

Replyllllllllllllllllllllllllllllllllllllll
Mr. Kow i t t ’ s let ter does indeed represent a s imp le r way of ge t t i ng to
the Bronx - (far super io r to the subway which I ut i I ize da i I y). I t has
the advantage of be ing comprehens ib l e . . (t he sub rou t i ne , not the
subway system)- by almost any Basic programmer, and has the po ten t i a l

b . r . n 23

8080 Programming Tutorial: llllllllllllllllllllllllll
Hill Introduction and Terminology—Part 1

by Ward Christensen O J

PART I
INTRODUCTION

Why a Tu to r i a l ?

There are s t i l l peop le Jus t
ge t t i ng i n to m i c rocompu t i ng .
Perhaps they have been in i t for
a wh i l e , but mos t l y wo rk ing w i th
BASIC.

The programs on the CPMUG d isks
draw a l o t of a t t en t i on , and
f requen t l y people would l i ke to
mod i f y , or at l eas t read, some of
the assembler programs on those
d i sks .

As some of you know from read ing 2.
my p rev ious L i fe l i nes a r t i c l es ,
my s t y l e is rather i n f o rma l . I
w i l l teach, not from books, but
from exper ience . My t e rm ino logy
and de f i n i t i ons come from every-
day usage , not ’ ’ d i c t i ona ry de- 3.
f i n i t i ons ” . I w i l l a t t emp t to
give enough I n fo rma t i on for the
nov i ce to p i ck up, at l eas t , 4.
program read ing , i f not program
wr i t i ng .

I encourage comments: send them
to me in care of L i f e l i nes .

5.
Th i s t u to r i a l was o r i g i na l l y
pr I n ted i n the CACHE Reg i s t e r ,
the news le t t e r of CACHE, the
Chicago Area Computer Hobby i s t s
Exchange.

6.
In add i t i on to a genera l go ing-
over (add ing new t h i ngs I have
lea rned) , I w i l l add sec t i ons to
i t spec i f i ca l l y r e l a ted to CP/M, 7.
wh i ch were not cove red in my
o r i g i na l a r t i c l es .

TERMS - an i n t r oduc t i on to
gene ra I -use m ic rocomputer
te rms, and the terms which
w i l l be used in the f o l -
l ow ing sec t i ons .

8080 ARCHITECTURE - as need
be known to program i t .

THE ASSEMBLER - How to pre-
pare assembler programs for
p rocess ing by the CP/M as-
semble r . Use of comments,
e t c .

DATA MOVEMENT INSTRUCTIONS
- the s imp les t I ns t r uc t i on
for moving data w i t h i n the
8080 and between the 8080
and memory.

ARITHMETIC INSTRUCTIONS -
do ing add, sub t rac t , i n -
crement and decrement.

THE 8080 STACK - Sub rou -
t i nes , sav ing da ta , PUSH
and POP i ns t ruc t i ons .

CONTROL OF EXECUTION SE-
QUENCE - the JMP, CALL and
RET i ns t ruc t i ons , and t he i r
cond i t i ona l fo rms.

INPUT OUTPUT INSTRUCTIONS -
ge t t i ng da ta i n t o and ou t
of the computer .

OTHER INSTRUCTIONS - The
8080 i ns t ruc t i ons which do
not f a l l I n t o the above
g roup ings .

PITFALLS: wh i l e not a very
large sec t i on , I t w i l l cov-
er the more common m is takes
beg inn ing 8080 programmers
make, (Mos t l y because I
remember making them!)

SUBROUTINES - Some use fu l
r ou t i nes which accomp l i sh
what a s i ng le i ns t r uc t i on
canno t : message p r i n t i ng ,
base conve rs i on (dec ima l -
b i na ry) e t c .

CP/M INTERFACE - Ty ing i t
a 1 1 together.

Why 8080?

As a hobby i s t ’ s and genera l pu r -
pose mic roprocessor , the 8080 has
now been a round fo r abou t 6
years. The compa t i b l e , but more
’ ’ comp le te ” Z-80 m i c rop rocesso r
might be cons idered by some as a
more l i ke l y processor to teach.

Howeve r , the 8080 is s t i l l the
’ ’ l owes t common denomina to r ” , and
the most popu la r p rocesso r fo r
assembler programs in The CP/M
Users Group.

Along w i th the fact tha t I am not
t ho rough l y expe r t in the Z -80 ,
the ava i l ab i l i t y of a s t anda rd
assemb le r , ASM, supp l i ed w i t h
CP/M, Jus t i f i e s the 8080 bas i s
for t h i s t u to r i a l . I s t r ong l y
encourage someone el se to make
use of t he i r Z-80 knowledge, and
wr i t e a t u to r i a l us ing the Zi log
mnemonics.

8.
HIGHLIGHTS

The tutor I al w i l l :

p resen t necessa ry t e rm i - 9.
no logy (expanded upon
g rea t l y from the CACHE ver-
s ion)

10.
cove r a l l the 8080 I n -
s t r uc t i ons

in t roduce programming t i ps
11.

warn of the easy ’ ’ p i t f a l l s ”
which plague the beg inn ing
8080 programmer

Background

I have w r i t t en hundreds of 8080
assembler programs. Most are of
a s imp le u t i l i t a r i an na tu re to
so l ve a p rob lem I m igh t have.
O the rs have become more w ide -
sp read In t he i r usage , such as
MODEM for t r ans fe r r i ng f i l e s over
phone l i nes , DU, the disk u t i l i -
t y , and FMAP, UCAT, and CAT, the
mas te r ca ta l og ing sys tem p ro -
grams.

’ ’ exp lo re ” a t yp i ca l CP/M
program which makes use of
DISK Input /Outpu t 12.

TUTORIAL OUTLINE

The f o l l ow ing t op i cs w i l l be
covered In the 8080 t u to r i a l :

13.
1. INTRODUCTION

24

REQUEST FOR QUESTIONS

Af te r the f i na l I ns ta l lmen t of
the t u to r i a l , I would l i ke to
con t i nue with a ques t i on and
answer col umn, i f there is su f f i -
c ient interest. As soon as some-
thing catches your in terest , jo t
I t down and send i t to me C/0
L I fel I nes. Questions of general
i n t e res t (which I am able to
answer) w i l l be r ep r i n ted In
L i fel I nes. Personal answers wi l l
be l im i t ed by a t ime-avai lab le
basis, and wi l l be to those ques-
t ions accompanied by a stamped
return envelope (or post card).

Does anyone have a suggestion for
which program to "dissect"? I t
should exercise many of the CP/M
capab i l i t i es , yet should not be
too long. I’d p re fe r i t to be
one of my own CPMUG con t r i bu -
t ions, as that would mean I can
best exp la i n not only the in-
s t r uc t i on f unc t i ons , but why I
chose to do something a pa r t i cu -
lar way.

People often ask me to recommend
books which they may use to learn
8080 programming, to be able to
read and/or modify the programs
in the CPMUG. Does anyone know
of such a book tha t I might
recommend? I ’ l l pass i t on via
th is column, too.

PART 2 - TERMS

Knowledge of the f o l l ow ing
terms w i l l help you In ge t t i ng
th rough the f u tu re sec t i ons of
th is 8080 t u to r i a l . I frequently
f ind I t necessary to use new
terms in the de f i n i t i ons of
others.

Therefore, when using one of the
defined terms for the f i r s t time
in a pararaph, I w i l l usua l l y
make i t UPPER CASE.

The terms are de f i ned as they
w i l l be used in the t u to r i a l ,
thus spec i f ic references to the
8080, and CP/M wi l l be found in
many of them. However, most of
the terms apply more general ly.
These are not " o f f i c i a l " def-
i n i t i ons , but just "common usage"
- as have become common to micro-
computer! sts over the years.

depends upon how much MEMORY Is
in the computer, but has a maxi-
mum of 65,536 In the 8080. Each
of these MEMORY l oca t i ons is
cal led a BYTE (see BYTE).

ADDRESS also applies to the loca-
t ion which an ex te rna l device
talks to the 8080 - via a PORT.

I hope t h rough (so r r y , you
" th rough" lovers) the t u to r i a l
wi l l bui ld a general "microcom-
pu te r i s t s vocabulary", since pro-
gramming frequently involves dis-
cuss ions such as "w i l l you be
running at 4MHz?" and "does your
p r i n te r hook to a se r i a l , or
pa ra l l e l po r t ? " , so i t helps to
know these terms also.

At t imes , the exp lana t i ons get
very "basic", i.e. you may say "I
know that". However, there ARE
people who read 8080 programs,
who have asked me things l ike

He: "I don’t understand some of
the commands"

Me: "What do you mean?
He: "Ah, l ike MV I.
Me: "Oh, you mean 8080 Op Codes
He: "Oh, is THAT what you cal l

them?

Thanks to Chuck Weingart, Russell
Stevens, and Joe McGuckln, for
suggest ing many of the terms
which I didn’t think of.

AND

Used in programming, much as i t
is In common Eng l i sh : to mean
"both" of two condit ions must be
true. For example, "I w i l l go _to
the club meeting If I can get a
r ide, AND if I don’t have to work
that day".

AND also refers to the combining
of BITS, in a "both" fashion:

A BA and B

0 0 0
0 1 0
1 0 0
1 1 1

In an 8080, we are always ANDI ng
8 BITS at a t ime. For example,
to test If a pa r t i cu la r BIT is on
in a BYTE, we AND that BYTE with
another BYTE. The resu l t s w i l l
be zero only I f the tes ted b i t
was zero. O the rw ise , I t w i l l
have the value of the tested b i t ,
a l though usua l l y we are Just
concerned whether I t is zero or
non- zero.

For example, to test i f b i t 2
i s on (see BIT f o r b i t
numbering), we AND with a byte
which has b i t 2 on also.

Thus, to test the byte:

X X X X X 1 X X

to see if b i t 2 Is on, we AND I t
with the value:

0 0 0 0 0 1 0 0

producing the resu l t :

0 0 0 0 0 1 0 0

S i nee th is value is non- zero, we
know the 2-b i t of the o r ig ina l
byte was on. I f i t had been
OFF, the resu l t would have been:

ACCUMULATOR

A spec ia l REGISTER in which
ar i thmet ic and logical operations
are performed.

In the early days of computing,
the e lect ron ic c i r cu i t s required
to make an accumulator were very
expensive, so computers t yp i ca l l y
only had one. Al though tha t
reason Is gone, many computers
s t i l l have only one, or a l im i ted
number, of accumulators. Another
reason for the l im i t a t i on is that
the i r address (i.e. REGISTER) is
imp l i c i t and not exp l i c i t l y
stated in the ins t ruc t ion .

For example, In the 8080, the
Ins t ruc t i on ADD B imp l i es tha t
the sum w i l l be in A, the ac-
cumu la to r . In the 8080, the ac-
cumula to r Is 8 BITS, or 1 BYTE
wide.

ADDRESS

The MEMORY of a computer may be
cons idered to be d i v i ded Into
locat ions, each of which has an
ADDRESS. The f i r s t ADDRESS In
the computer Is 0, the h i ghes t

(continued next page)
25

terchangeably.

ASSEMBLY LANGUAGE

Sometimes s imply ca l l ed "assem-
b le r " : The format and content of
the programs which are processed
by the ASSEMBLER.

This includes LABELS, OP CODES,
OPERANDS, and COMMENTS.

ASYNCHRONOUS

Usua l l y r e fe r s to even t s , I .e.
two events which do not need to
occur at the same t ime or at some
f i xed repea t i ng I n te r va l , are
ASYNCHRONOUS.

The term occurs most commonly In
reference to SERIAL data t rans-
fers , i-e. in which the BITS of a
BYTE are sent one-at-a-t I me.

ASYNCHRONOUS (o f t en abbreviated
ASYNCH) data t ransfer means the
t ime at which each BYTE of data
s ta r t s , Is i ndependen t of when
the p rev ious cha rac te r had
started. Another way of saying
tha t , Is t ha t t he re Is no p re -
determined t ime between charac-
te rs .

00000000

Conceivably you could test mu l t i -
ple b i t s at once, ge t t i ng a non-
zero r esu l t I f any of the b i t s
were on, but I have not found a
need to do th i s .

Base 2 Is f r equen t l y used In
compu te rs because of the capa-
b i l i t y of an e l ec t ron i c dev i ce
(usua l l y a t r ans i s to r) to be
e i t he r conduc t i ng , or not con-
duct ing e l ec t r i c i t y .

Also common to d i f f e ren t bases:
In a multi— d i g i t number (such as
297) the r i gh tmos t d i g i t stands
for un i t s (’ ones ’) , the next
d i g i t to the l e f t stands for the
base, and the next for the base
squared, etc.

This is true for base 2, as i t is
for any o the r . The r i gh tmos t
d ig i t stands for un i t s (0 or 1),
the next, twos (again 0 or 1) the
next 2 squared, or 4, etc.

If we th ink of a BYTE as being an
8 BIT number, then we count the
b i t s from l e f t to r i gh t hav ing
the f o l l ow ing va lues : 128, 64,
32, 16, 8, 4, 2, 1. Thus, the
number 128 is represented In base
2 as 1000000, the number 5 as
00000101. The ’101' means 1
four, plus 1 one, or 5.

Because I t is d i f f i cu l t to deal
w i th b i na ry numbers d i r ec t l y ,
they are f r equen t l y grouped In
threes or fours, which r esu l t s In
e i t he r an OCTAL (when grouped In
threes) or HEXADECIMAL (usua l l y
jus t ca l led HEX, when grouped In
fours) . Thus 5 in OCTAL would be
grouped :

00 000 101
and In HEX would be grouped

0000 0101

We then give the values for the
g roup ings , I ns tead of the BITS.
Thus In OCTAL we have 005, and in
HEX we have 05. The dec ima l
number 100 Is r ep resen ted in
b ina ry as 01100100, which in
OCTAL (g rouped 01 100 100) Is
144, and In HEX (grouped 0110
0100) Is 64.

ASCI I

An acronym for American Standard
Code for In fo rmat ion Interchange.
This Is a standard code for re-
p resen t i ng l e t t e r s , numbers ,
punctuat ion, special characters,
and control characters as a 7 BIT
va lue . In a MICROCOMPUTER the
cha rac te r s In the ASCII code
occupy the r i gh t 7 BITs of an 8
BIT BYTE.

ASSEMBLER

A PROGRAM which converts a SOURCE
PROGRAM cons i s t i ng of INSTRUC-
TIONS (OP CODE and OPERAND) In to
an OBJECT PROGRAM In 8080 in te r -
nal format. For example, to move
a va lue of an ASCII *8’ In to
REGISTER A, you code:

MVI A, ’8’

In your program. The ASSEMBLER
then conve r t s t h i s to "3E 38”
(HEX) which is the form the 8080
understands I t In.

The word ASSEMBLER also refers to
the language of w r i t i ng PROGRAMS,
as used in the phrase ”1 w ro te
the p rogram In ASSEMBLER” (as
opposed to BASIC or FORTRAN, two
other computer languages).

The reason for the I n te res t In
assemb le r p rog ramming Is t ha t
assembler programs genera l l y run
faster , and take less room, than
programs w r i t t en In higher level
I anguages.

Also there are ce r t a i n func t ions
such as INTERRUPT handl ing which
are e i t he r Imprac t i ca l or Impos-
s ib le In higher level languages.

The disadvantage Is the knowledge
and t ime requ i red , and the in -
creased d i f f i cu l t y (read ’ ’easier
to screw up”) of assembler pro-
grams. See the f o l l ow ing I tem
also, as ’’ASSEMBLY LANGUAGE", and
’’ASSEMBLER’’ are often used In-

BAUD

Refers to the number of BITS per
second, at which a SERIAL TER-
MINAL ope ra tes . W i thou t conse -
quence, you may jus t take BAUD I t
to mean the same as "B i t s per
second” . I.E. a 300 BAUD te r -
minal t rans fers data at 300 b i t s
per second.

I don ’ t want to get I n to a long
discussion of t h i s , but there Is
a minor d i s t i nc t i on between "b i t s
per second" and "baud" , but i t
only comes Into play for example,
when you deal w i th some "b i t s "
which take 1.5 t ime un i t s . (Next month t h i s mu l t i - pa r t

t u to r i a l w i l l cont inue with more
te rmino logy .)

BINARY

The number system in base 2. The
number of d i g i t s usee In any base
Is 1 less than the base. Base 10
uses 10 d i g i t s , from 0 through 9.
Base 2 uses 2 d i g i t s , 0 and 1.

26

■HillAssembly Language Interface to PL/l-80
, , I I 1/ J
by Michael J. Karas

The advent of the PL / l - 80 high level programming
language for CP/M-based machines has opened up the
wide wide world of easy, sophist icated, and struc-
tured programming for business, commercial and sci-
en t i f i c appl icat ions. The language features of fer the
most capable development tools of any m icroprocessor
programming language ava i lab le in the marke tp lace
today. Through extended use of the language, others,
l ike myself, are going to f ind out that the features
of PL/ l -80 of fer far more than just programming nice-
ty for appl icat ions software development. The struc-
t u re , speed of execu t i on , self-documentation fea-
tures, and fu l l CP/M compat ib i l i t y make PL/ l -80 the
obvious choice for many systems u t i l i t y and dedicated
funct ion processor programming exercises.

The one main disadvantage of any high level language
is the i so l a t i on from the ’ ’guts” of the computer
machinery that resu l t s for the programmer. Don’t get
me wrong by th ink i ng that th is is altogether a disad-
vantage. After a l l , i t is the whole idea behind the
use of a high level language in the f i r s t place. But
for cer ta in aspects of systems u t i l i t y and dedicated
funct ion processor programming, more access to the
in terna ls of the computer are generally needed. The
normal manner of obtaining this capab i l i t y Is through
development of programs in machine language. But we
a l l know what a pain that can be for very large
programs thousands of bytes In size. I t always seems
that when an assembly language program gets over
about 2000 bytes, that there is a screaming need for
easy access to disk f i l e s , operator Interfaces, and
s imp l i f i ed development of complex logical structures.
PL / l - 80 o f f e r s a l l of the t h i ngs the heavy duty
assembly language programmer needs to make l i f e easy.
The next obvious question is . How do I handle that
spec ia l i n te r face?..or How can I do IN and OUT In
PL/l-80?..or How can PL/ l -80 access the SYSTEM tracks
of a CP/M f loppy d isk? ...and the l i s t of ques t ions
goes on and on and on. The answer to all these ques-
t ions Is to use the assembly language inter face fac i -
l i t i e s o f f e red through the mechanism of ex te rna l
procedure ca l ls in PL/ l-80.

The D ig i t a l Research LINK-80 manual describes how I t
a i l works but doesn’t make I t very easy to undei—
stand. Here in example form I intend to present an
easy explanation of how to Implement an assembly
language Interface to PL/ l-80. I have chosen to im-
plement ’’hooks” to allow d i rec t access to the CP/M
BIOS vec tor t ab le of CP/M 2.2 so that the PL / l - 80
programmer can make those spec ia l system u t i l i t y
packages with a minimum of pain, yet leave the avenue
open to perform all those special I/O functions that
the standard CP/M BDOS Inter face never seems to have
enough of. I have chosen to w r i t e a d i ske t t e copy
u t i l i t y program in PL/ l -80 and to let the compiler
make I t easy to w r i t e a l l the ope ra to r p rompt ing
messages and to allow quick human readable presenta-
t ion of the logical structure of the program, while

at the same time a l lowing d i rec t high speed access to
the disk dr ivers In the BIOS.

The start of th is project resul ted In the assembly
language module given below. This module provides
Interface t rans la t ion between the external procedure
cal I Ing mechanisms of PL / l - 80 and the en t r y /ex l t
requirements of the various assembly language hard-
ware inter face dr ivers of the CP/M 2.2 BIOS. Detai led
discussion of al l aspects of the Inter face conven-
tions are weI I beyond the scope of th is a r t i c l e but a
few general comments are In order. Readers who desire
to ’’understand to the MAX” are encouraged to A) study
the examples given here ca re fu l l y while B) consult ing
the PL/ l -80 LINK-80 Users Manual and C) consult ing
the CP/M 2.2 System Al te ra t ion Guide. As a start , to
become the most f am i l i a r with the mechanisms I would
suggest Implementing the examples given here on your
own computer system. I t only takes a few days or
evenings and the experience can be quite rewarding.

The Interface to the BIOS, In general, Is done as
fol lows: The l oca t i on of the BIOS vec tor t ab le of
entry points Is determinable in any CP/M system by
look ing at the address In l oca t i ons 1 A 2 of low
memory. This address gives the pointer to the warm
boot address of the BIOS vector table. All other BIOS
entry points are accessible by adding an of fset to
the warm boot po in te r vec to r . Some func t i ons are
console status, l ine p r i n te r output, and disk track
select ion. All of the of fsets necessary are given In
the assembly language source code below. The typ ica l
procedure to get to a BIOS subroutine, with 8080 type
machine language, would be l ike th is :

funct ion:
I hid 0001 ;get warm boot vector table pointer
Ixl d, off set ;get o f fset for desired BIOS entry pt
dad d ;make address of entry point
pchl ; branch ind i rec t through (HL) to BIOS

; subroutine

If the label entry ’ ’ function” had been CALLed from
some main program, then the return at the end of the
BIOS subroutine would get program execution back to
the ca l l i ng program, assuming we use the ca l l e r s
stack all along the way. If the entry to the Inter-
face rout ine required post processing of BIOS return
parameters before return ing back to the main ca l l i ng
program, then the above program segment becomes:

funct ion:
I hid 0001 ;get warm boot vector table pointer
Ixl d,o f fse t ;get o f fse t for desired BlOSentry pt
dad d ;make address of entry point
Ixl d,backhere;put return address to here on stack
push d
pchl ; branch ind i rec t through (HL) to BIOS

; subroutine
backhere:

(continued next page)

< post processing
ins t ruc t ions . . . •>

ret ;back to main program cal l point

All parameter information entered at the BIOS fo l lows
the fo l lowing general set of ru les:

a) If entry parameter is a single byte i t is
placed in the (C) r eg i s te r .

b) If entry parameter is a double byte or an
address i t is entered in the (BC) reg is te r
pa i r .

c) Return parameters of one byte values are
brought back in the (A) reg is ter .

d) Return address of double byte parameters are
returned in the (HL) reg I s t e r .

For now that should give the reader the information
needed to understand the BIOS part of the assembly
language module given below. The fu l l set of PL/ I -80
rules are complicated, so I w i l l only touch on the
concept here and the few inter face types used by the
BIOS module to r e tu rn parameters to PL / l - 80 . For
character s t r ing variables, the return parameter is
put on the stack with the length of the s t r ing given
back In the (A) reg is ter . This scheme applies to the
CON IN and READER rout ines which bring a byte charac-
ter back from the BIOS. These push the character onto
the stack and send a 01 length back to the ca l l i ng
PL/ l -80 program.

If the return parameter is a PL/ l -80 data type that
Is one byte in size, but is a numerical type var i -
able, then the value Is returned to PL/ l -80 in the
(A) r eg i s te r . I f a numer ica l type va r i ab le of two
bytes or an address is being passed back then the
PL/ l -80 program gets the parameter back In the (HL)
reg I ster pa i r.

All entry data sent from the PL/ l -80 program to the
assembly language module comes as fo l lows If a para-
meter Is defined for passage to the BIOS: the rule is
that when ca l led , the assembly language program re-
ce ives an address In the (HL) r eg i s te r pai r that
points to a table of memory locations (In our case a
single pai r) . These two bytes of memory contain an-
other address tha t po in t s r i gh t at the data para-
meter. The type, size, and number of parameters are
defined by the design of the assembly language pro-
gram and the statement of external entry point cha-
racter I s t ies. No type coding is passed or error check
done. In other words, both s ides have to agree to
what Is t ry ing to be done before the cal l and return
parameter passing w i l l work properly.

The program module "PL I B I OS.ASM", given below in
source code form, establ ishes the names for sixteen
small programs that t rans la te procedure ca l ls from
wi th in a main PL/ l -80 program to the forms required
by the BIOS. The subsequen t modu le be low ,
"B I OSCALL.DCL" is a small f i l e that f u l l y def ines, in
a manner compatible with the assembly language pro-
gram, the form that the PL/ l -80 program must use to

call the entry point de f i n i t i ons to make the para-
meter passing work.

The assembly language program Is meant to be assem-
bled in to a r e l oca tab le f i l e of the ".REL" type by
use of the D ig i t a l Research relocat ing, macro assem-
bler, RMAC. This assembler, seeing the pseudo opcodes
"PUBLIC" on the program names bui lds the .REL f i l e
with a -table to te l l the [l a t e r u t i l i zed] l ink pro-
gram where the re l a t i ve addresses of the subroutines
in the module are loca ted . A f te r the host PL / l - 80
program, l ike the disk copy u t i l i t y given later in
the a r t i c l e , is compiled into a re locatable object
module, that .REL module also con ta i ns a t ab le of
sub rou t i ne ca l l addresses which were known to be
external to the PL/ l -80 program. The external nature
of the labe ls is de f i ned by the i nc luded dec la re
statement from the f i l e "B I OSCALL.DCL" which simply
told the compiler that I intended to provide another
".REL" module that had these program names in i t ,
spec i f i ca l l y "PL I B 10S.REL". The Link program LINK 80
is used to hook the two modules together and make an
abso lu te ob jec t module out of them. The abso lu te
object module happens simply to be the executable
CP/M type ".COM" f i l e .

F i le PLIBIOS.ASM

Di rec t CP/M 2.2 Bios access I n te r f ace Module For
PL/ l -80

This module to be assembled with D ig i t a l Research
RMAC provides in ter face conversion between PL/ l -80
ca l l s and function references and the Bios vector
tab le en t r i es . The f i l e "B I OSCALL.DCL" should be
inc luded in your PL / l - 80 source program wi th a
$ include statement to properly estab l ish the external
entry point names and ca l l i ng format de f i n i t i on . Most
bios entry point rout ines are treated as funct ion
cal I modules.

The user of these rou t ine in PL/ l -80 ca l l s should be
aware that some dif ferences ex is t between the CP/M
2.2 BIOS imp lemen ta t ions that are ava i l ab le from
various software and hardware vendors. In pa r t i cu la r ,
not al I BIOS rout ines perform sector t rans la t ion with
the SECTRAN rout ine. Secondly, If the BIOS performs
the function of physical sector deblocking, and the
sector t rans la te funct ion is not used, then log ica l
sector numbers entered at the BIOS settrk entry point
may require numbering from zero instead of the usual
start with logical sector number 1. This assembly
language rout ine makes no assumption about the sector
number s t a r t . Also no t r ans la t i on is done. The
ca l l i ng PL/ l -80 program must an t i c ipa te the charac-
t e r i s t i c s of the host system BIOS. (BEWARE especial ly
with t r i cky u t i l i t i e s being upgraded from CP/M 1.4
Including D ig i t a l Research’s SYSGEN program.) Hope-
fu l l y CP/M 3.0 coming out soon wi l l f u l l y resolve
this problem. Note that CP/M 3.0 w i l l probably f u l l y
e l iminate the need to have d i rec t BIOS access at a l l .

This module is Copyright protected by:
COPYRIGHT (C) 1981 MICRO RESOURCES
2468 Hansen Court, Simi Valley CA 93065
(805) 527-7922

28

name ’PLIBIOS’
t i t l e ’D i r ec t CP/M BIOS Vector Cal ls From PL / l - 80 ’

*#*************#**#****#***♦*#**###*#«***##»****#♦<.♦
* *
* bios d i r ec t ca l l s from p l / i for d i r ec t i /o *
* ♦
**

getpl :
mov e,m ; low (addr)
i nx h
mov
xchg

d,m ; h i gh(addr)
;hl = .char

mov
ret

c,m ; to reg i ster c

;

; get s ing le word value to BC

getp2:
cal 1 getpl ;get low byte of
i nx h ; parameter
mov
ret

b,m ; get high byte also

pub 1 ic cboot ;co ld boot reload of cp/m entry
pub 1 ic wboot ;warm boot re load of ccp
pub 1 ic cstat ; re turn byte for console s tatus
pub 1 ic con in ; return character input from console
pub 1 ic conout ; wr i te character to console
pub 1 ic 1 i s t ; wr i te character to l i s t device
pub 1 ic punch ; wr i te character to punch device
pub 1 ic reader ; re turn character input from reader
pub 1 ic home ;home selected disk un i t
pub 1 ic seldsk ; se lec t disk un i t and re turn

; parameter tab le po in te r
pub 1 ic settrk ; se lec t t rack
publ ic setsec ; se lec t sector number
pub 1 ic set dma ;set disk i /o data bu f fe r po in te r
pub 1 ic read ;read selected sector and return status
pub 1 ic wr i te ; wr i te se lected sector and re turn s ta tus
publ ic 1 stat ; return byte for console status
publ ic

9

9

sectran ; t rans late sector number

; t rans fe r c t r l to indexed bios vector tab le entry
; enter with DE = entry o f f se t index

gobios:
I hid wbvect+1 ;get cp/m warm boot vector
dad d ;add in vector tab le o f fse t
pchl ;go to tab le entry

.***********#******************♦****************♦**♦**

. *
; d i r ec t bios access rou t i nes for p l / i - 80 ca l l s *

.#***************♦***********#******#********•*********
9

; Bios vector tab le o f fse ts from the warm boot vector
; to access the vector tab le entry po in ts of f the
; loc 1 & 2 warm boot vector

cbooto
wbooto
c st ato
con i no
conouto
I i sto
puncho
readero
homeo
sei dsko
settrko
setseco
setdmao
reado
wr i teo
I stato
strano

crcrcrcrcrcrcrcT
crcrcrcrcrcrcrcrcr

(D
(D

(D
(D

(D
(D

<
D

(D
(D

(D
O

(D
<

D
(D

(D
(D

(D

; co ld boot o f fse t
;warm boot o f f se t
; console s ta tus o f fse t
; console input o f f se t
; console output o f fse t
; I i st device output o f f se t
;punch device o f fse t
; reader device o f fse t
;d isk home o f fse t
; se lec t disk o f fse t
; se lec t disk o f f se t
; se lec t sector o f f se t
;set dma address o f fse t
;read l og i ca l sector o f f se t
; wr i te l og i ca l sector o f fset
; I is t s tatus o f f se t
: sector t r ans la te o f fse t

; r ou t i ne to enter bios cold boot to completely
; re load cp/m
cboot:

Ix i d,cbooto ;get o f fset
Jmp gobios ;on our way

; r ou t i ne to enter bios warm boot to re load
; ccp and bdos

wboot :
Ix i d,wbooto ;get o f fse t
Jmp gobios ;go re load

k
J

lK
) \

D
O

\b
J

O
<

- ‘

O
O

U
l

; r ou t i ne to return console status byte
; return byte value to stack

cs ta t :
Ix i d, estate ; s tatus o f fse t
Jmp gobios ; return b i t (8) in (a)

; ;from bios

; r ou t i ne to get character from the console
; for input

con i n :
Ix i d,conino ;con in o f fse t

(continued next page)

; Def ine pos i t i on of CP/M 2.2 warm boot vector l oca t ion
»

wbvect equ 0 ;addr of warm boot Jump
»

».******************♦****************#******#*#******<#
; * *
; * general purpose rou t i nes used upon entry *
; * *.********** ** ***********************************4HHHfr
9

9

9

; get s ing le byte parameter to reg i s te r c

29

r e t l ch r : ; entry pt for 1 character
; return to pl / I -80 on stack

cal l gobios ;go get the status to (a)
pop h ; return address
push psw ; character to stack
Inx sp ; delete f lags
mvi a,1 ; character length Is 1
pch 1 ;back to ca l l i ng rout ine

; rout ine to output one character to the console

conout :
cal l getpl ;get s ingle output char to (c)
Ixi d,conouto;console output o f fse t
jmp gobios ; return to pl / I d i rec t from bios

; rou t ine to output one character to the l i s t device

l i s t :
cal l getpl ;get s ingle output char to (c)
Ixi d , l i s t o ; l i s t output o f fset
Jmp gobios ; return to p l / i d i rec t from bios

; output rout ine to send one character to the punch

punch:
cal l getpl ;get s ingle output char to (c)
Ixi d,puncho ;punch output o f fse t
jmp gobios ; return to p l / i d i rec t

;from bios

; rou t ine to get character from the reader for input

reader :
Ixi d, reader© ; reader input o f fse t
jmp re t l ch r ; let common code do rest

; rout ine to get l i s t device status

1 s tat :
Ixi d , l s t a to ; l i s t status o f fse t
jmp gobios ; return b i t (8) status

; in (a) from bios

; home selected disk entry point

; in (hl) from bios

; rou t ine to send double byte track number to bios

set t rk:
cal 1 getp2 ;get track number to (be)
Ixi d ,set t rko ;set track o f fset
jmp gobios ; return through bios

; rou t ine to send double byte sector number to bios

set sec:
cal 1 getp2 ;get sector number to (be)
Ixi d, set seco ;set sector o f fse t
jmp gobios ; re turn through bios

; rou t ine to send data buffer pointer to bios

setdma:
cal 1 getp2 ;get dma address to (be)
Ixi d,setdmao ; setdma o f fse t
jmp gobios ; return through bios

; sector t rans la te rou t i ne .

sectran:
cal 1 getp2 ;get logsec to (be)
Ixi d,strano ; sectran o f fse t
Jmp gobios ; return through bios

; rou t ine to read sector of 128 bytes

read :
Ixi d,reado ;read sector o f fset
jmp gobios ; return error status

jthrough bios

; wri te sector r ou t i ne , entry parameter of write type

wr i te :
cal 1 getpl ;get wri te type to (c)
Ixi d ,wr i teo ; wri te sector of fset
Jmp gobios ; return error status

jthrough bios

;+++.. .end of f i l e

home:
Ixi
Jmp

d,homeo
gob ios

;home of fset
; return d i rec t from bios

; entry
; table

sei dsk :

point tc
po i nter

cal 1
Ixi
Jmp

5 select disk and return parameter
for selected drive in (hl)

getpl ;get s ingle byte drv select byte
d,seldsko ; select disk of fset
gobios ; return addr pointer

Here 1 w i l l end th is sect ion of the a r t i c l e ; next
month a sequel w i l l go in to more de ta i l on PL / I .
You’ll probably want to have th is part on hand for
reference when you read Part 2.

30

Tips & f t m i llllllllllllllllllN
This program will load Digital Research's Dynamic De-
bugging Tool (DDT) without overlaying the CP/M Con-
sole Command Processor, and works for CP/M version
1.4 and 2.0 through 2.2 . . .Be sure and set the equate
MSIZE for your particular CP/M system size, for proper
operation . . .name it to something like
'DDTLOAD. ASM', assemble and load . . . then execute
it as follows:

This month, our Tip again comes from Kelly Smith.

From time to time, I need to do some "special tricks'
within CP/M itself to modify its operation to do some-
thing other than what Digital Research had intended. If
you attempt to load DDT 'normally', it 'clobbers' the
Console Command Processor by overlaying it with
DDT. . . making modification (using DDT) impossible.

A»DDTLOAD«cr»

DDT will now load into memory 'normally', but will be
relocated BELOW the CCP. Here's the software to do it:

true equ -1 ; define true
false equ not true ; define false
cpml4 equ false ; true if CP/M vers 1.4
cpm22 equ true ; true if CP/M vers 2.2

msize equ 56 ; must be set for YOUR CP/M system size

base equ 0 ; CP/M system base address
/

if cpml4
cbase equ base + 2900h ; base of 16k CP/M 1.4 CCP
bias equ (msize-16)*1024 ; offset for system
nbase equ cbase 4- bias-lOh ; new base address

endif
/

if cpm22
cbase equ base + 3400h ; base of 20k CP/M 2.X CCP
bias equ (msize-20)*1024 ; offset for system
nbase equ cbase 4- bias-lOh ; new base address

endif
/

org base 4- lOOh
/

lhld base 4- 6 ; move old BDOS address to new BDOS entry
shld
shld

nbase 4- 1 ; swap new base address into original base
fa QP -1- A

mvi m,jmp ; make 'jump' opcode to new base address
Ixi h, '3D'-'O' ; create DDT command in

; console input buffer
shld cbase 4- bias 4- 7
Ixi h,'DT'
shld cbase 4- bias + 9
xra a ; make 'EOL' as null for message end
sta cbase 4- bias 4- 11
mvi a,8 ; reset command pointer
sta cbase 4- bias 4- 136
Ida base 4- 4 ; select current drive
mov c,a
jmp cbase 4- bias ; all parameters set, load DDT
end

31

IF INC0ME?=0 THEN \ <----- (l i ne added)
FOR l?=T.L?+1 TP TA?: \ <----- (' :\« added)

LMBAH I ?)=0 : \ <----- (' : \ added)
NEXT

GOTO 4050

In the sec t i on beg inn ing wi th l i ne label 7000

New Versions OPEN BASE.NAME $+’’1” RECL GLMON.REC.LEN? AS 1
FOR l%=1 TO TA?

GOSUB 19100 <----- (added)
LMBAL (I ?) =LYBAL (I ?)
READ #1, I ?;LYBAL(I ?) ,DUMMY?
IF CLASS?>3 THEN LMBAL(I?)=O <----- (added)
PRINT #1, l?;LYBAL(I ?) ,LMBAL(I ?)
NEXT

The Boss F inanc ia l Account ing System
Vers ion 1.06
This ve rs i on r epa i r s a bug concern ing the p r i n t i ng

of accounts r ece i vab le s ta temen ts . Because of an
incorrect date check, Ve rs ion 1.04 would not p r i n t a
statement to a customer i f t ha t customer was sent a
statement from a p rev ious pe r i od . Vers ion 1.06 cor-
rects the prob lem.

Owners of ve r s i on 1.04 can manua l l y c l ea r the
’ ’Statement Sent’’ f i e l d of each Customer/Vendor re-
cord to a l l ow the p r i n t i ng of the s t a temen ts to
proceed cor rec t l y .

Money Maestro
Vers ion 1 .1

Th i s new re l ease imp lemen ts check p r i n t i ng , and
deals wi th some bugs.

The most impor tan t bug cor rec t ion in t h i s ve rs i on
takes care of a m i sca l cu la t i on of the memory ava i l a -
ble for payees and ca tegor ies , p r ima r i l y a f f ec t i ng
ve rs i ons runn ing wi th 48K RAM.

L i feboat CP/M for M i c ropo l l s Models I and I I
Vers ion 2.20B
This r e l ease f i xes a bug in the COPY.COM program

which caused the las t t rack not to be formatted or
cop ied . The corrected ve rs i on of COPY is 5.3.

Any disk wi th t h i s p rob lem can be f i xed by f i r s t
us ing t h i s ve rs i on of COPY to fo rmat a disk f u l l y ,
and then e i t he r us i ng the M fo r Most op t i on or
PIP.COM to copy the f i l e s onto the newly formatted
d i sk .

Nevada COBOL
Vers ion 2.0
This ve rs i on incorporates the f o l l ow ing s tandard

fea tu res :

1- COPY statement for l i b ra r y hand l i ng .
2- CALL...USING...CANCEL...EX I T PR0GRAM.. .L I NKAGE
SECTION wi th dynamic l oad ing of up to f i ve ac t i ve
ca l l ed programs at any one t ime and cha in i ng to new
main programs.
3- PERF0RM..THRU...TI MES...UNTIL.. . pa rag raph or sec-
t i on names.
4- IF...NEXT SENTENCE...ELSE...NEXT SENTENCE.
5- Compound cond i t i ona l s AND/OR <=> wi th NOT.
6- GO TO...DEPENDING ON...
7- Al I f i gu ra t i ve cons tan t s i nc l ud ing HIGH-VALUES,
LOW-VALUES, and ALL.
8- Al I PICTURE s t r i ngs and BLANK WHEN ZERO, JUSTIFIED
RIGHT, SYNC, VALUE, REDEFINES, OCCUR S-T I MES, USAGE
COMP, COMP-3, DISPLAY.
9- 120 character non-numer lc l i t e ra l s .
10- Unique eas i l y understood Eng l i sh language d iag -
nos t i c error messages con ta i ned in a user changeable
f i l e .
11 - CURRENCY SIGN IS ...and DECIMAL-POINT IS COMMA.
1 2- I n t e rac t i ve ACCEPT/D I SPLAY.. . se r i es...W I TH NO
ADVANCING.. .UN IT . . .
13- RELATIVE (random) access f i l e s .
14- Sequent ia l f i l e s both f i xed and va r i ab le l eng th .
15- Choice of D i sp lay , 16 -b i t B ina ry or Packed Dec i -
mal (COMP-3) data types w i th up to 18 -d ig i t accura-
cy.

GLector
SELECTOR I I I -C2 Vers ion
Vers ion 2.02
Make the f o l l ow ing changes and add i t i ons to the

GLPERIOD.BAS p rog ram to co r rec t the c l os i ng of a
year, and the proper use of a non-ca lendar f i s ca l
year. Then recomp i l e GLPERIODSAS. Change the ?CHAIN
CODE SIZE to at leas t 13606 in SELECTOR.BAS. This is
the l as t l i ne in the p rog ram. Then recomp i l e
SELECTOR.BAS.

These changes b r i ng GLector to the cur rent ve rs i on
2 .02 .

SELECTOR.BAS
?CHAIN 80, 13606, 400, 2030

GLPERIOD.BAS
4015 M0N$=M IDS (MONTHS, (MM?- 1)*3+1 ,3)

(MONTHS rep laces FMONTHS.)

In the sec t ion beg inn ing w i th the l i ne label 4035

32

1 6- I NSPECT...TALLY I NG...FOR REPLAC I NG...BY ALL
LEADING/F IRST CHARACTERS-. BEFORE/AFTER IN IT IAL . . .
17-ADD, SUBTRACT, MULTIPLY, DIVIDE, GIVING, ROUNDED,
ON SIZE ERROR.
19- M0VE...T0... se r i es .
20-De fau l t d r ive assignment is now standard.
21 - LABEL RECORD IS OMITTED.

The bugs l i s t ed below have been corrected in t h i s
ve rs ion :

1 -Comparisons invo lv ing two negat ive numbers now are
handled cor rec t l y .
2-F i l e names with a blank F i l e type are now treated
proper ly .
3- A BOUNDARY ERROR message is now issued when a
program fa l l s through the last paragraph in a pro-
gram.
4- Tabs in a source f i l e are expanded by the com-
p i l e r .
5- The RELATIVE KEY for a Random f i l e can now be
any data- type, i.e. B inary , Packed Decimal or ASCI I
D isp lay up to 7 d i g i t s .
6- The RUN t ime package and the Compiler now look for
a CTL-C from the console less f requent ly than rev
1.404, thus speeding up compi le and run t imes.
7- Math and data conversion rou t i nes i nvo l v ing three
decimal places have been corrected.

working copies.

Note tha t on ly the FAC.BAS p rog ram can be func-
t i ona l l y compiled as is. See your app l i ca t i on notes
for the use of bound- in assembly r ou t i nes as demon-
strated using the other program f i l e s .

SELECTOR IV
Version 2.14A
A change in th is package dates from July 20, 1981.

If the last record in a f i l e is de leted and no other
'Key f i e l d ’ mod i f i ca t i on takes place during a f i l e
update session, the ’.KEY' f i l e w i l l not be proper ly
upda ted . The changes below in UPDATE.BAS (and
GLTRANS4.BAS i f you have the GLec to r IV sys tem)
co r rec t t h i s . The change in BATCH.BAS co r rec t s a
simi lar s i t ua t i on .

The change in SELECTOR.BAS is requ i red because of
the s l i gh t l y I arger code s ize of BATCH.BAS. The
other changes in GLPERIOD.BAS and GLTRANS4.BAS (of
GLector IV insure correct opera t ion when t ransac-
t i ons i nvo l v i ng 6 ledger accoun ts are p rocessed .
After making the changes, recompi le the programs to
be sure that C0MM0N.BAS, SCREENS.BAS, a l l DATE?.BAS
f i l es , and GETFILE.BAS are on the same disk dr ive as
the program being compiled.

Changed sect ions, unless o therw ise noted, appear in
bold.Postmaster

Version 3.4
These enhancements have been made to Postmaster

with the new vers ion:

1- Up to ten ex t rac t i on keys may be de f i ned and
processed in a s i ng le pass, as opposed to the
s i ng le key ex t rac t i on f o rmer l y poss ib l e . Fu l l
source code for the extract module is provided.
2-Up to 25 c i t i es may be def ined and referenced by
s ing le letter codes. This feature can g rea t l y re-
duce key entry t ime. The codes are saved on disk
when data entry is suspended, so that they may be
consul ted when new in fo rmat ion is entered la ter on.
3- A ’ fas t - l i s t ’ command has been added to PMEDIT,
d i sp lay ing each record in compressed format on a
s ing le l ine. The new command makes i t much eas ier
to locate i nd i v idua l records when paging through a
f i l e .
4-PMLABL, PMTYPE, and PMENVE au tomat i ca l l y produce
the correct 5+4 output format for n i ne -d ig i t Zip
codes whenever a l l nine character pos i t i ons in the
Zip f i e l d conta in numeric i n fo rma t ion only.

UPDATE.BAS
28000

IF l?=3 THEN MENU$=" B" : \
XXX$=""

IF LIM? THEN MENU$=" B "+F IL. NAME?

Below three l ines added 7 /20/81:

IF SAVE.DELETE.RP AND KEY.COUNT?=O THEN \
KEY$< 1)="END": \
KEY.COUNT?=1

IF KEY.COUNT? THEN DUMMY?=FN.WRITE.KEY?

BATCH.BAS
DEF FN.DELETE.EXECUTE?

IF OPEN? (20) THEN CLOSE 20
OPEN "DELETE" AS 20
0PEN?(20)=-1
IF END #20 THEN 0.59
END.OF.FILE ?=0
WHILE NOT END. OF.FILE?

READ #20; F ILE?,R.P
READ #F I LE?,TA(F ILE?-1) ;L I NE DRECS
PRINT USING "i" ;#FILE?,TA(FILE?-1);CHR$(26)
TA(FILE?-1) =TA(F I LE?—1) — 1

S-BASIC
Version 5.4
This in fo rmat ion should be added to the S-BASIC

documentation:

If the system is being implemented on a CP/M com-
pa t i b l e system other than CDOS (Cromemco), the two
’.CDS’ f i l e s are not used. I f your system is CDOS,
then REName the two ’.CDS’ f i l e s to ’.REL’ on your

Below l ine changed 7 /20/81:
IF R.P<=TA(F I LE ?- 1) THEN PRINT USING

"i";#FILE?,R.P;DREC$
(This is a l l one I i ne.)

(continued next page) 33

New
Products

BAS I C I nterpreter-280
by Control -C Sof tware

SELECTOR.BAS
iCHAIN 60, 17550, 0, 3520 <— (17550 as of 7 /20/81)

GLTRANS4.BAS
PAGE?=0
PAGE$=1 <--(added 7/20/81)
I TEM.L INE%=1

DEF FN.CFIELDt
DUMMY$=FN.NEXT.FIELDS

('+ " •" below added 7/20/81)
IF LEN(CF IELDS (GF IELD?)) THEN \

PRINT USI NG"&";CFIELD$(GF IELD?)+"
ELSE DUIWY$=FN.US$:\

% INCLUDE DATE4

Delete a l l of FN.MASKS

This BASIC In terpreter runs under CP/M 2.2; i t is
designed to accompany Business BASIC II (Basic Four
Corp.) and requ i res a 64K RAM CP/M system. U t i l i t i e s
inc lude renumbering, d i rec to ry management, and an
ins ta l l a t i on u t i l i t y for con f i gu ra t i on to pa r t i cu l a r
t e rm ina l s .

71110 IF MATCH(STR$(GFIELD?),"6 8 10 12 14 16", 1)
AND \

VAL (CF I ELDS (GF I ELDS)) =0 \
OR GFIELDS>16 THEN GF IELDS=1 :RETURN

DUMMY?=FN.MASK? (CFIELD?) <— deleted 7/20/81
GLTRANS$=DR I VE$+BASE.NAME$+”DAT” CP/M MITS Q70 Dr ive r

by The Software Store
This d r i ve r emu la tes the D iab lo 1620 /1650 /630

p r i n te r s using the MITS Q70 p r i n te r and the CP/M
opera t ing system. The d r i ve r supports p ropor t iona l
spacing and f u l l use of word processing systems. An
entry po in t for the CP/M L i s t Output Status rou t i ne
i s prov i ded.

The f o l l ow ing Diablo cont ro l codes are supported by
the d r i ve r : Backspace, Carr iage Return, Space, For-
ward P r i n t On, Backward P r i n t On, Set Lef t Margin,
Reverse 1/2 L inefeed, L inefeed, Def ine VMI (Ve r t i ca l
Motion Index), Def ine HM I (Hor izontal Motion Index),
Set Form Leng th , 1/2 L i ne feed , Reverse L i ne feed ,
Absolute Hor izonta l Tab, Absolute Ve r t i ca l Tab, and
Form Feed. An add i t i ona l code sequence for se t t i ng
the form length is provided because th i s func t i on is
accomplished by the Diablo with a sw i t ch .

F loa t i ng Point FORTH
by Timin Engineering Company
The 16- and 32 -b i t in teger capab i l i t y of FIG FORTH

is r e ta i ned , but a f l oa t i ng po in t mode Is added.
These s ing le p rec i s i on f l oa t i ng po in t numbers have
approx 1 mate l y seven s i gn i f i can t dec ima l d i g i t s .
Add i t i on , sub t rac t i on , nega t i on , mu l t i p l i ca t i on ,
d i v i s i on , in teger conve rs i on , and compar i son are
supported. Run t ime error messages warn the user of
except ional cond i t i ons and al low processing to con-
t inue at the user’s op t ion .

28000 IF LIM% THEN MENU$=" M *’+LEFT$(GLTRANS$,LEN
(GLTRANSS)-4)+" "+\

KDRIVES+" "+STRSOS)
Below three l ines added 7 /20 /81 :
IF KEY.C0UNT?=0 AND SAVE.DELETE.RP THEN \

KEYSC 1)= ”END” : \
KEY.COUNT?=1

IF KEY.COUNT? THEN DUMMY?=FN. WRITE.KEY?

GLPERI0D.BAS
DIM ACTS (7) , AMNT(7) REM <— 7 versus 6, 7/20/81

T/MAKER I I
Version 2.2.3
In th is new vers ion the F i l es statement should now

work for CP/M 14 as well as 2.x. Prev ious ly , i t did
not work p roper l y for CP/M 1.4.

A bug in the Combine f unc t i on caused a data row in
the t ab le in memory to be i gno red i f the f i r s t
cha rac te r on the l i ne appeared a f t e r co lumn 6.
Correct processing should be that the row is ignored
only i f the f i r s t character appears af ter column 7.
This problem has now been f i xed .

F loa t i ng point w i l l run on Z80/8080/8085 hardware,
requ i res a minimum memory size of 28K.

OASIS Pascal
by Phase One Systems
Modelled on UCSD Pascal , the OASIS vers ion pe rm i t s

viding modularity through class inheritance.separate compilat ion of rout ines. Construction of
procedure l i b ra r i es is p rov ided by new ’module’ ,
’ expo r t b l ock ’ , and ’ impo r t b lock ’ dec la ra t i ons .
Separately compiled modules are assembled into l ink-
ing loader formats and combined with other modules
to form l i b ra r i es of rout ines and global variables.
Without r es t r i c t i ons on the order of declarat ions,
any constants, types, var iables, and rout ine de f i n i -
t ions may be grouped together for better reading and
modular i ty.

Variables can be i n i t i a l i zed and exp l i c i t type con-
version Is permitted. In addi t ion, syntax for s t ruc-
tured constants has been added. Integer l i t e ra l s may
be represented in a red lx other than decimal.

S t i f f Upper Lisp requires CP/M or TRSDOS, 32K to 64K
RAM (at least 48K is recommended), a minimum disk
capacity per drive of 75K.

Li feboat CP/M For TRS-80 Model
Version 2.25A
When one runs the COPY program, and copies from A:

to B: and the copy is completed, the f i r s t choice of
the menu states that a carr iage return w i l l copy
again using the same parameters.

BUGS

PLAN80
by Business Planning Systems
This f inancia l appl icat ions package is w r i t t en in

Pasca l . I t is designed for p l ann ing , f o recas t s ,
budgets, and analyses; i t produces pr in ted or screen
reports. Problems are described in rows and columns,
a l l ow ing the user to input data va lues , spec i f y
ca lcu la t ions, and communicate resu l t s between PLAN80
appl icat ions. Results may be graphed or displayed In
numeric form.

If a user employs 13 columns s/he can create up to
235 rows. If there are 100 rows, 40 columns can be
used. The manual supplies a table showing the l im i -
ta t i ons on the number of rows and columns.

Actual ly, the program reverts back to the defaul t of
copying from A: to B:.

L i feboat CP/M 28 For TRS-80 Model I I
Version 2.25A
The GETFILE of th is version is not compatible with

past versions.PLAN80 requires and 8080 or Z80 CPU, CP/M, 56K RAM,
a console with clear screen and cursor control fea-
tures. Two disk drives with a minimum of 100K each
are recommended though not required.

PMATE
Version 2.06
PMATE wi l l bomb when run under CP/M 2.25A on the

TRS Model II i f ERASE TO END OF LINE, LINE INSERT
and LINE DELETE are implemented in the CNF f i l e .
PMATE works fine when these functions are removed.

Unlock
Version 1.3
I f one Is logged onto d r i ve A: Un lock ’ s

FILENAMESAS wi l l read FILENAME.BAS from drive A:.
Unlock A: F I LENAME.BAS wi l l read FILENAME£AS from
drive B:. B:F ILENAME.BAS wi l l be read from C:, etc.

XASM-09
Version 1.05
Negative displacements in Load E f fec t i ve Address

Instruct ions are not calculated properly. In com-
puting displacements between -32 and -17, and t16
and +31, the program calculates a 5—b i t displacement
rather than the proper 8— b i t displacement.

The fo l lowing patch f ixes i t :

At l oca t i ons 215c, 2163, and 2165 rep lace the E0
with an F0.

MicroPro Software On the App le
Except for the special WordStar for the Apple, no

MicroPro Internat ional Corporation software wi l l run
on the Apple. MicroPro is working on custom ver-
sions of the i r products for the Apple.

S t i f f Upper Lisp
by Harry Tennant
This I n te rac t i ve computer language inc ludes an

ed i to r , trace package, break package, s ingle step
fac i l i t y , and on- l ine help f ac i l i t y (user extensi-
ble), a formatter, a spe l l ing correct ion funct ion, a
h i s t o r y package to ma in ta i n a h i s t o r y of the
user/computer in teract ion. This package permits the
user to edit and redo Inputs, to save or manipulate
system outputs. An i n i t i a l i za t i on f i l e Is automati-
ca l ly loaded to customize the environment and to
define autoloading functions. Function de f i n i t i ons
are loaded into primary memory only when executed,
so no space is used unless needed. Context
switching Is performed through the use of sp l i c ing
read macros.

S t i f f Upper Lisp stores more than 120 compiled func-
t ions Into less than 14K bytes. I t includes a I ibra-
ry of functions wr i t t en in Lisp.

Closure f unc t i ons may be de f i ned to encapsu la te
programs and data, to help in w r i t i ng genera tor
functions and coroutines, to have automatic t a i l
recursion e l im inat ion so that recursive functions
can be wr i t t en as e f f i c i en t l y as in te rac t i ve func-
t ions. Closure functions may be defined to enable
bu i ld ing tree structured binding environments, pro-

35

A Software Trick ll
by Kelly Smith

In my travels through the software written by others
(articles, disassemblies, etc.), I occasionally find some
"tricks" incorporated to either optimize the storage re-
quirements of the code (typically ROM based) or to at-
tempt to confuse disassembly . . . although this is not a
recommended routine, I think you may find it of inter-
est.

The LXI Trick

rw/HHiiiwu mt (u \i w

Many large mainframe computers (minis and maxis)
have a SKIP instruction . . . but most micros are multi-
byte instruction oriented, and therefore it is difficult to
provide a SKIP when the instruction length is indeter-
minate. First, an example of "straight" coding:

errorl: mvi a,1 ; set-up error code 1
jmp error$handler

enor2: mvi a,2 ; set-up error code 2
jmp error$handler

enor3: mvi a,3 ; set-up error code 3, and fall into it

error$handler: ; all error codes come here
/

Ixi d,error$message ; point to error message,
; error code in Areg.

This is easy enough to understand (right?), but consider this:

Ixib equ 1 / equate first byte of LXI b, nnnn

errorl: mvi A,1 / set-up error code 1
db Ixib / first byte of LXI B,nnnn

error2: mvi A,2 / set-up error code 2
db Ixib / first byte of LXI B,nnnn

error3: mvi A,3 / set-up error code 3
Ixi d,error$message ; point to error message

Lifeboat Associates
Pre-Eminent Publisher
Of Computer Software

Introduces Software for DEC PDP-1 1 's
XENIX

Version 7 UNIX Operating System Configured
for 11/23 and Unibus models of
PDP-11 Computers

AMCOR Software RSTS/E
AMBASE DBMS with Full Suite of Financial
Accounting Applications
Contact:

Lifeboat Associates
Minicomputer Systems Division

1651 Third Avenue, Dept. N
New York, New York 10028

Tel :(21 2)860-2520, TWX:710-581 -2524,
Telex:640693

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft
PDP-11 and Unibus are trademarks of Digital Equipment Corporation

; error code in A reg.

If a jump is made to ERROR1, the E Reg. is set-up, then
the LXIB will be executed, the B&C Regs, will be given
"garbage" code that follows it, and finally the program
counter will be incremented past the next instruc-
tion ... it SKIPs and falls into the eventual output
routine . . . insidious to disassemblers! This was one of
the "favorite's" at MITS (remember the Altair?).

36

Some People
Spell Their Time Away...

Smart People Use
MicroSpe l l

Spelling with
The Competition

1.Write masterpiece.
2. Use Word Processor.
3.Run spell checker.

Spelling With MICROSPELL,
The Spelling Corrector

5. Re-run word processor.
6.Find Marked word.
7.Use Dictionary.

2. Use Word Processor.
3. Run MicroSpell.
4. Print Masterpiece.
5. Take the rest of the day off. processor.

9.Repeat steps 6 through 8
until you're finished.

Spelling by Memory

3.Search for Misspellings.

5.Look up incorrect words.

7. Repeat steps 3 through 6
until you think you've
finished.

8.Retype masterpiece.
9.Rest from eyestrain.

lO.Hope you were right. 11.Rest from eyestrain.

Available Memory
RequirementsIBIIIIIIIIIIIIIH
Cur ren t l y memory requ i rements for a program are
spec i f i ed in terms of Minimum System Size. This
method of measuring a computer’s capacity is mis-
leading because there is no standard re la t ionsh ip
between the nominal system size and the actual a-
mount of memory ava i l ab le for program use. Two
computers which sign on with the same system size
message can d i f f e r in usable memory by 10K, depend-
ing upon the comp lex i t y of the ope ra t i ng system
implementation.

Therefore, in an ef for t to provide a t o ta l l y stan-
dard method of speci fy ing memory requirements, we
wi l l be re fe r r ing to the ’ ’Available Memory Require-
ment” of a program. Generally, the Avai lable Memory
of a computer w i l l be 6K to 8K less than the system
size. To f ind the exact amount of Avai lable Memory
on your system, run the fo l low ing program, which Is
wr i t t en In Microsof t BASIC.

Operating Systems
Description Version
These CP/M operating systems are available from Lifeboat As-
sociates except where otherwise mentioned.

Apple II w/Microsoft BASIC .. 2.0B
Cromemco System 3 8" .. 1.4
Cromemco System 3 8" .. 2.2
Datapoint 1550/2150 DD/SS .. 2.2
Datapoint 1550/2150 DD/DS ... 2.2
Durango F-85 .. 2.23
Heath H8 with H17 Disk .. 1.43
H89 Heath/Zenith-Magnolia .. 2.2
iCOM 3812 .. 1.41
iCOM 3712 w/Altair Console ... 1.41
iCOM 3712 w/IMSAI Console ... 1.42
iCOM Microfloppy(2411) .. 1.41
iCOM 4511/Pertec D3000 Hard .. 2.22
Intel MDS Single Density .. 2.2
Intel MDS 800/230 Double Density 2.2
MITS Altair 3202 Disk ... 2.2
Micropolis Mod I-All Consoles 1.411
Micropolis Mod II-All Consoles 1.411
Micropolis Mod I .. 2.20B
Micropolis Mod II ... 2.20B
Compal Micropolis Mod II .. 1.4
Exidy Sorcerer Micropolis Mod I 1.42
Exidy Sorcerer Micropolis Mod II 1.42
Vector MZ Micropolis Mod II ... 1.411
Versatile 3B Micropolis Mod I ... 1.411
Versatile 4 Micropolis Mod II .. 1.411
North Star SD .. 1.41
Mostek MDX STD Bus .. 2.2
Sol North Star SD .. 1.41
North Star SD IMSAl SIO Console 1.41
North Star SD MITS SIO Console 1.41
North Star DD ... 1.45
North Star SD ... 2.23A
North Star DD/QC w/Corvus ... 2.22
North Star DD/QD ... 2.23A
Ohio Scientific ... 2.24
Ohio Scientific C-3B ... 2.24B
Ohio Scientific C-3C' (Prime) 2.24B
Processor Technology Helios II .. 1.41
from Lifeboat TRS-80 5 1/4" (Mod I) 1.41
from Lifeboat TRS-80 Mod II ... 2.25A
from Cybernetics TRS-80 Mod II 2.25

Hard Disk Modules
Description Version

10 ’** PROGRAM TO FIND AVAILABLE MEMORY
20 MEMSIZ = I NT ((PEEK(6)+256*PEEK(7))/1024)
30 PRINT ’’Your Computer Has”;MEMS I Z; ”K Bytes of

Avai lable Memory”*
40 END

In this way, you can be cer ta in if a computer pro-
gram w i l l run on your computer . Authors of the
computer packages l i s ted in L i f e l i nes ’ Version L i s t ,
are encouraged to inform us of the exact Avai lable
Memory Requirements of the i r programs so that they
may be included in next month’s issue.

*This line and the line above I t should appear as
one I i ne.

Version Listllllllll llllllllllllllllllll
The listed software is available from the authors, com-
puter stores, distributors, and publishers.

These prices are given as approximations. Actual prices
for these products will vary from vendor to vendor.

New products and new versions are listed in boldface.

Corvus Modules .. 2.1
Apple-Corvus Module ... 2.1a
KONAN Phoenix Drive ... 1.8
Micropolis Microdisk .. 1.92
Pertec D3000/iCOM 4511 .. 1.6
Tarbell .. 1.5
OSI CD-74 for OSI C3-B .. 1.2
OSI CD-36 for OSI C3-C ... 1.2
SA-1004 for OSI C3-D .. 1.1

New products and new versions appear in boldface.

KEY
P Processor
MR Memory Required
$ Price

S Standard Version
M Modified Version
OS Operating System

38

VERSION LIST August 14, 1981
Product s M OS P MR $
ACCESS-80 1.0 CP/M 8080/Z80 54K 792
Accounts Payable/Cybemetics 3.1 CP/M Z80 64K 500 Needs RM/COBOL
Accounts Payable/MC 1.0 CP/M 8080/Z80 56K 600 CP/M 2.2
Accounts Payable/Structured Sys 1.3B CP/M 8080 52K 840/40
Accounts Payable/Peachtree 7-13-81 CP/M 8080 48K 530/60 Needs OBASIC
Accounts Receivable/Cybernetics 3.1 CP/M Z80 64K 500 Needs RM/COBOL
Accounts Receivable/MC 1.0 CP/M 8080/Z80 56K 600 CP/M 2.2
Accounts Receivable/Peachtree 7-13-81 CP/M 8080 48K 530/60 Needs OBASIC
Accounts Receivable/Structured Sys 1.4C CP/M 8080 56K 840/40
Address Mngemt.Sys 1.0 CP/M 8080 150 Requires 2 drives
ALDS TRSDOS 3.4 TRSDOS 32K 80/35
ALGOL/60 4.8C CP/M 8080 24K 250
ANALYST 2.0 CP/M 8080 52K 250/20 Needs OBASIC, QSORT or VSORT
APL/V80 Interpreter 3.2 CP/M Z80 48K 500 Needs APL terminal
Automated Patient History 1.2 CP/M 8080 48K 175
BASIC-80 Compiler 5.3 5.24 CP/M 8080 48K 360/35
BASIC-80 Interpreter 5.21 5.21 CP/M 8080 40K 335/35 W/Vers. 4.51,5.2
Basic Interpreter-280 CP/M 8080/Z80 64K 600 Needs CP/M 2.2
BASIC Utility Disk 2.0 2.0 CP/M 8080 48K 75
BSTAM Communication System 4.5 4.5 CP/M 8080 16K 200
BSTMS 1.2 1.2 CP/M 8080 24K 200
BUG/uBUG Debuggers 2.03 CP/M Z80 129/25 NotforCDOS
BDS C Compiler 1.44 1.44T CP/M 8080 32K 150/30
Boss Finc'l Acctg Sys 1.06 CP/M 8080 54K 2495 Needs 2 drive,min. 200K ea.
Whitesmith's C Compiler 2.0 CP/M 8080 60K 630/30
CBASIC2 2.07P 2.17P CP/M 8080 32K 125/20
CBS Applications Builder 1.3 CP/M 8080 48K 395/40 CDOS version too
CIS COBOL Standard 4.3,1 CP/M 8080 48K 850/50
CIS COBOL Compact 3.46 3.46 CP/M 8080 32K 650/50
FORMS 1 CIS COBOL Form Generator 1.06 1.06 CP/M 8080 150/20
FORMS 2 CIS COBOL Form Generator 1.1,6 1.16 CP/M 8080 200/20
Interface for Mits Q70 Printer CP/M 150 CP/M 1.41 or 2.XX
COBOL-80 Compiler 4.01A 4.01A CP/M 8080 48K 710/35
COBOL-80 PLUS M/SORT 4.01 CP/M 8080 48K 845/65
CONDOR 1.10 CP/M Z80 48K 695/35
CREAM (Real Estate Acct'ng) 2.3 CP/M 8080 64K 250 Needs CBASIC
Crosstalk 1.4 CP/M Z80 150
DATASTAR Information Manager 1.101 CP/M 8080 48K 350/60
Datebook 2.03 CP/M 8080 48K 295/30
dBase II 2.02A CP/M 8080/Z80 48K 700/50
Dental Mngmt. System 8.7 CP/M 8080/Z80 48K 750/NA Requires CBASIC2
DESPOOL Print Spooler 1.1A CP/M 8080 19K 80
DISILOG Z80 Disassembler 4.0 4?0 CP/M Z80 24K 110 Zilog mnemonics
DISTEL Z80/8080 Disassembler 4.0 CP/M 24K 110
EDIT Text Editor 2.06 CP/M Z80 129/25
EDIT-80 Text Editor 2.02 CP/M 8080 99/25
ESQ-1 2.1A CP/M 8080 48K 1495/50 Needs CBASIC2
FABS 2.4A CP/M 8080 32K 195/25
FILETRAN 1.2 TRSDOS 32K 99/20 1-way TRS-80 Mod I, TRSDOS-CP/M
FILETRAN 1.4 CP/M 32K 149/20 2-way TRS-80 Mod 1, TRSDOS & CP/M
FILETRAN 1.5 CP/M 32K 99/20 1-way TRS-80 Mod II, TRSDOS -CP/M
Financial Modeling System 2.0 CP/M 48K 300
Floating Point FORTH 2 CP/M 8080/Z80 28K 195
Floating Point FORTH 3 CP/M 8080/Z80 28K 335
FORTRAN-80 Compiler 3.43 3.43 CP/M 8080 36K 435/35
FORTRAN TRS 3.42 TRSDOS 80/35
FPL 2.0 2.0 CP/M 8080 48K 695/30
General Ledger/Cybemetics 1.3C CP/M Z80 48K 500 Needs RM/COBOL
General Ledger/MC 1.0 CP/M 8080/Z80 56K 600/10 CPM2.2orMPM
General Ledger/Peachtree 7-13-81 CP/M 8080 48K 530/60 Needs OBASIC
General Ledger/Structured Sys 1.4C CP/M 8080 52K 840/40
GLECTOR Accounting System 2.0 CP/M 8080 56K 350/25 Use w/CBASIC2, Selector III C-2
HDBS 1.04 CP/M + 52K 300
Lifeboat IBM/CPM 1.1 CP/M 8080 175
Integrated Acctg Sys/Gen'l Ledger CP/M 8080 48K 150/25 Needed for pkgs below
Integrated Acctg Sys/Accts Pyble CP/M 8080 48K 250/25
Integrated Acctg Sys/Accts Recvble CP/M 8080 48K 250/25
Integrated Acctg Sys/Payroll CP/M 8080 48K 250/25
Interchange CP/M 8080 32K 59.95/10 CP/M2, Mtchmker for N.S. users
Inventory/MicroConsultants 5.3 CP/M 8080/Z80 56K 995 Needs CP/M 2.2
Inventory/Peachtree 7-13-81 CP/M 8080 48K 530/60 Needs OBASIC
Inventory/Structured Sys 1.0C CP/M 8080 52K 640/40
Job Cost Control System/MC 1.0 CP/M 8080/Z80 56K 600 Requires CP/M 2.2
JRT Pascal 1.4 CP/M 8080 56K 225/25
LETTERIGHT Text Editor 1.1B CP/M 8080 52K 200/25
MAC 2.0A CP/M 8080 20K 120/25
MACRO-80 MACRO Assembler Package 3.43 3.43 CP/M 8080/Z80 159/25
Magic Wand 1.11 CP/M 8080 32K 395/40
MAGSAM III 4.2 CP/M 8080 32K 145/25 For CBASIC/MBASIC
MAGSAM IV 1.1 CP/M 8080 32K 295/25 Needs CBASIC
MAILING ADDRESS Mail List System 7-13-81 CP/M 8080 48K 530/60 Needs OBASIC
Mail Merge 2.26 CP/M 8080 150/25 Needs same version Wordstar
Matchmaker CP/M 8080 32K 110/5
MDBS 1.04 CP/M + 48K 900/35
MDBS-DRS 1.02 CP/M + 52K 300
MDBS-QRS 1.0 CP/M + 52K 300
MDBS-RTL 1.0 CP/M + 52K 300

The listed software is available from the authors, computer stores, distributors, and publishers.

39

VERSION LIST
Product s M OS P MR $ Notes
Microspell 4.2 CP/M 8080 48K 249
Medical Mngemt. System 8.7 CP/M 8080/Z80 48K 750/NA Needs CBASIC2
Microstat 2.0a CP/M 8080/Z80 48K 250/NA Needs BASIC-80,5.03 or above
Mince 2.5 CP/M 8080/Z80 56K 125/20
Mini-Wrehse Mngmt Sys 5.5 CP/M 8080 48K 650
MP/M Operating System 1.1 MP/M 8080 32K 300/50 For Intel MDS 800
MSORT 4.01 CP/M 8080 48K 160/20 Needs COBOL-80
Mu LISP-80 2.10 CP/M 8080 24K 210/25
Mu SIMP/Mu MATH Package 2.10 CP/M 8080 48K 260/30 muMATH80
NAD Mail List System 3.0D CP/M 8080 48K 115/25
Nevada COBOL 2.0 2.0 CP/M 8080 32K 149/25
r Entry w/Inv CP/M Z80 500 Needs RM/COBOL
PAS-3 Medical 1.76 CP/M 8080 56K 995/25 Needs CBASIC2
PAS-3 Dental 1.62 CP/M 8080 56K 995/25 See above
PASM Assembler 1.02 CP/M Z80 129/25
Pascal/M 3.2 CP/M 8080 56K 175/25 Also for CDOS
Pascal/MT Compiler 3.2 CP/M 8080 32K 250/30
Pascal/MT + 5.25 CP/M 8080 52K 500/30 ForZ80 too
Pascal/Z Compiler 4.0 CP/M Z80 56K 395/25
Payroll/Cybemetics CP/M Z80 500 Need RM/COBOL
Payroll/Peachtree 7-13-81 CP/M 8080 48K 530/60 Needs OBASIC
Payroll/Structured Sys 1.0E CP/M 8080 56K 840/40
PL/I-80 1.3 CP/M 8080 48K 500
Plan-80 2.0 CP/M 8080/Z80 56K 295/40
PLINK II 1.08 CP/M Z80 350
PLINK Linking Loader 3.25P CP/M Z80 129/25
PMATE 2.06 CP/M 8080 32K 195
POSTMASTER Mail List System 3.4 3.4 CP/M 8080 48K 150/20 Needs CBASIC
Professional Time Acctg 3.11a CP/M 8080 48K 595/30 Needs CBASIC2
Property Manager 7-13-81 CP/M 8080 48K 925/60 Needs OBASIC
PSORT 1.1 CP/M 8080 100
QSORT Sort Program 2.0 CP/M 8080 48K 100
RAID 4.7.3A 4.7.3 CP/M 8080 28K 250/25
Real Est Aquisition Prog 2.1 CP/M 8080 56K 500 Needs CBASIC
Remote 3.01 CP/M Z80 150
Residential Prop Mngemt Sys 1.0 CP/M Z80 48K 650
Lifeboat RECLAIM Verification Prog 2.1 CP/M 8080 80
SBASIC 5.4 CP/M 8080 295/35
Scribble 1.2 CP/M 8080/Z80 56K 175/25
SELECTOR III-C2 Data Manager 3.24 CP/M 8080 48K 295/25 Needs CBASIC
SELECTOR IV 2.14a CP/M 8080 52K 550/35 Needs CBASIC
Shortax 1.2 CP/M Z80 48K 500/15 TRSDOS,MDOS too, needs BASIC-80 5.0
SID Symbolic Debugger 1.4 CP/M 8080 120/25 N/A-Superbr'n
SMAL/80 Programming Sys 3.0 CP/M 8080 75/25 For CP/M 1.x
Spellguard 1.0 CP/M 8080/Z80 32K 295/20 Needs Word Processing Program
STATPAK 1.2 1.2 CP/M 8080 495/30 Needs BASIC-80 4.2 or above
STRING BIT 1.02 1.02 CP/M 8080 75/25
STRING/80bit 1.22 CP/M 8080 95/25
STRING/80 bit Source 1.22 CP/M 8080 295
Suoersort I Sort Package 1.5 CP/M 8080 225/40 Max. record = 4096 bytes
T/MAKER II Data Calculator 2.2.3 CP/M 8080/Z80 48K 275/25
T/MAKER II Demo 2.2.1 CP/M 8080 48K 50
TEX Text Formatter 1.1 CP/M 8080 36K 105/50
TEXTWRITER-III 3.6 3.6 CP/M 8080 32K 125/20
TINY C Interpreter 800102C CP/M 8080 105/50
TINY C II Compiler 800201 CP/M 8080 250/50
TRS-80 Customization Disk 1.3 CP/M 8080 75
ULTRASORT II 4.1A CP/M 8080 48K 195/25
Lifeboat Unlock 1.3 CP/M 8080 95 Use w/BASIC-80 5.2 or above
Visicalc 1.37 Apple 8080 32K 150
Wordindex 3.0 CP/M 8080 48K 195 Needs WordStar
WordMaster 1.07A CP/M 8080 40K 145/40
WordStar 3.0 CP/M 8080 48K 445/60
WordStar w/MailMerge 3.0 CP/M 8080 48K 575/85
XASM-05 Cross Assembler 1.04 CP/M 8080 48K 195/25
XASM-09 Cross Assembler 1.05 CP/M 8080 48K 200/25
XASM-51 Cross Assembler 1.07 CP/M 8080 48K 200/25
XASM-F8 Cross Assembler 1.03 CP/M 8080 48K 200/25
XASM-400 Cross Assembler 1.02 CP/M 8080 48K 200/25
XASM-18 Cross Assembler 1.40 CP/M 8080 48K 200/25
XASM-48 Cross Assembler 1.60 CP/M 8080 48K 200/25
XASM-65 Cross Assembler 1.96 CP/M 8080 48K 200/25
XASM-68 Cross Assembler 1.99 CP/M 8080 48K 200/25
XMACRO-86 Cross Assembler 3.40 CP/M 8080 48K 275/25
XYBASIC Interpreter Extended 2.11* CP/M 8080 450/25
XYBASIC Interpreter Extended CP/M 2.11 CP/M 8080 550/25
XYBASIC Interpreter Extended COMP 2.0 CP/M 8080 450/25
XYBASIC Interpreter Extended ROM 2.1 CP/M 8080 450/25
XYBASIC Interpreter Integer 1.7 CP/M 8080 350/25
XYBASIC Interpreter Integer COMP 2.0 CP/M 8080 350/25
XYBASIC Interpreter Integer ROM 1.7 CP/M 8080 350/25
Z80 Development Package 3.5 CP/M Z80 130 N/A Suprbm,Magnolia, mod CP/M
ZDM/ZDMZ Debugger 1.2/2.0 CP/M Z80 45 For Micropolis, N'Star,Apple, IBM 8"
ZDMZ Debugger 2.0 CP/M Z80 45 See note above
ZDT Z80 Debugger 1.41 1.41 CP/M Z80 50 N/A Superbr'n,mod CP/M
ZSID Z80 Debugger 1.4A CP/M Z80 130 See note above.
These prices are given as approximations. Actual prices for these products will vary from vendor to vendor.
New products and new versions are listed in boldface.
+ These products are available for Z80 or 8080, in the following host languages: BASCOM, COBOL-80, FORTRAN-80, PASCAL/M, PASCAL/Z,
CIS COBOL, CBASIC, PL/1, and BASIC-80 5.xx.

40

FIR
ST C

LA
SS M

A
IL

U
.

S. PO
STA

G
E

P
A

ID
P

erm
it N

o. 4
1

6

1651 Third A
venue / N

ew
 Y

ork, N
.Y. 10028

FIR
ST C

LA
SS M

A
IL

